山东德州市武城县2024年数学九上开学学业质量监测模拟试题【含答案】
展开
这是一份山东德州市武城县2024年数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图是甲、乙两名射击运动员的10次射击训练成绩的折线统计图.观察统计图,下列关于甲、乙这10次射击成绩的方差判断正确的是( )
A.甲的方差大于乙的方差B.乙的方差大于甲的方差
C.甲、乙的方差相等D.无法判断
2、(4分)图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )
A.y=4n﹣4B.y=4nC.y=4n+4D.y=n2
3、(4分)下列选择中,是直角三角形的三边长的是( )
A.1,2,3B.,,C.3,4,6D.4,5,6
4、(4分)下列图形中,不是中心对称图形的是( )
A.B.C.D.
5、(4分)下列约分计算结果正确的是( )
A.B.C.D.
6、(4分)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为( )
A.3:1B.4:1C.5:1D.6:1
7、(4分)下列标识中,既是轴对称图形,又是中心对称图形的是()
A.B.C.D.
8、(4分)如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
A.(-3,1)B.(4,1)
C.(-2,1)D.(2,-1)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是_____.
10、(4分)16的平方根是 .
11、(4分)直角中,,、、分别为、、的中点,已知,则________.
12、(4分)实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为_____分.
13、(4分)如图,矩形ABCD中,AB=6,BC=8,E是BC上一点(不与B、C重合),点P在边CD上运动,M、N分别是AE、PE的中点,线段MN长度的最大值是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两名自行车爱好者准备在段长为3500米的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面.他们同时出发,匀速前进,已知甲的速度为12米/秒,设甲、乙两人之间的距离为s(米),比赛时间为t(秒),图中的折线表示从两人出发至其中一人先到达终点的过程中s(米)与t(秒)的函数关系根据图中信息,回答下列问题:
(1)乙的速度为多少米/秒;
(2)当乙追上甲时,求乙距起点多少米;
(3)求线段BC所在直线的函数关系式.
15、(8分)用适当的方法解方程:
(1) (2)
16、(8分)如图,在 ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.
(1)求证:四边形AFCE是平行四边形.
(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗 ”若成立,请写出证明过程;若不成立,请说明理由.
17、(10分)如图,在中,点,分别为边,的中点,延长到点使.
求证:四边形是平行四边形.
18、(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b(k≠0)经过B,D两点.
(1)求直线y=kx+b(k≠0)的表达式;
(2)若直线y=kx+b(k≠0)与y轴交于点M,求△CBM的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知y轴上的点P到原点的距离为7,则点P的坐标为_____.
20、(4分)如图,在矩形ABCD中,AB=1,BC=7,将矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,点E、F分别是BD、B′D′的中点,则EF的长度为________cm.
21、(4分)已知矩形,给出三个关系式:①②③如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________ .
22、(4分)如图所示,工人师傅做一个矩形铝合金窗框分下面三个步骤进行
先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.
(1)摆放成如图②的四边形,则这时窗框的形状是平行四边形,它的依据是 .
(2)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是矩形,它的依据是 .
23、(4分)实数,在数轴上对应点的位置如图所示,化简的结果是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学举行了一次“世博”知识竞赛.赛后抽取部分参赛同学的成绩进行整理,并制作成图表如下:
请根据以上图表提供的信息,解答下列问题:
(1)写出表格中m和n所表示的数:m= ,n= ,并补全频数分布直方图;
(2)抽取部分参赛同学的成绩的中位数落在第 组;
(3)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?
25、(10分)某公司与销售人员签订了这样的工资合同:工资由两部分组成,一部分是基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售一件产品,奖励工资10元.设某销售员销售产品x件,他应得工资记为y元.
(1)求y与x的函数关系式.
(2)该销售员的工资为4100元,他这个月销售了多少件产品?
(3)要使每月工资超过4500元,该月的销售量应当超过多少件?
26、(12分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.
求证:AE∥CF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
结合图形,乙的成绩波动比较小,则波动大的方差就小.
【详解】
解:从图看出:乙选手的成绩波动较小,说明它的成绩较稳定,甲的波动较大,则其方差大.
故选A.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、B
【解析】
试题解析:由题图可知:
n=1时,圆点有4个,即y=4×1=4;
n=2时,圆点有8个,即y=4×2=8;
n=3时,圆点有12个,即y=4×3=12;
……
∴y=4n.
故选B.
3、B
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、12+22≠32,故不能组成直角三角形;
B、()2+()2=()2,故能组成直角三角形;
C、32+42≠62,故不能组成直角三角形;
D、42+52≠62,故不能组成直角三角形.
故选:B.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
4、A
【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.
【详解】
A、不是中心对称图形,故此选项正确;
B、是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项错误;
故选:A.
此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.
5、C
【解析】
根据约分的定义逐项分析即可,根据分式的基本性质把分子、分母中除1以外的公因式约去,叫做分式的约分.
【详解】
A. 的分子与分母没有公因式,不能约分,故不正确;
B. 的分子与分母没有公因式,不能约分,故不正确;
C. ,故正确;
D. ,故不正确;
故选C.
本题考查了分式的约分,熟练掌握分式的基本性质是解答本题的关键.
6、C
【解析】
菱形的性质;含30度角的直角三角形的性质.
【详解】
如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1,故选C.
7、A
【解析】
试题分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形性质做出判断.①既是中心对称图形,也是轴对称图形,故此选项正确;②不是中心对称图形,是轴对称图形,故此选项错误;③不是中心对称图形,是轴对称图形,故此选项错误;④是中心对称图形,不是轴对称图形,故此选项正确.
故选A.
考点:中心对称图形;轴对称图形.
8、A
【解析】
解:因为经过三点可构造三个平行四边形,即▱AOBC1、▱ABOC2、▱AOC3B.根据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2.1.
【解析】
连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:如图,连接CP.
∵∠ACB=90°,AC=3,BC=1,
∴AB=,
∵PE⊥AC,PF⊥BC,∠ACB=90°,
∴四边形CFPE是矩形,
∴EF=CP,
由垂线段最短可得CP⊥AB时,线段EF的值最小,
此时,S△ABC=BC•AC=AB•CP,
即×1×3=×5•CP,
解得CP=2.1.
∴EF的最小值为2.1.
故答案为2.1.
10、±1.
【解析】
由(±1)2=16,可得16的平方根是±1.
11、3
【解析】
由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.
【详解】
∵在直角△ABC中,∠BAC=90°,D. F分别为AB、AC的中点,
∴DF是△ABC的中位线,
∴DF=BC.
又∵点E是直角△ABC斜边BC的中点,
∴AE=BC,
∵DF=3,
∴DF=AE=3.
故答案为3.
本题考查了三角形中位线定理和直角三角形斜边上的中线.熟记定理是解题的关键.
12、100
【解析】
利用加权平均数的公式直接计算.用91分,90分,81分别乘以它们的百分比,再求和即可.
【详解】
小惠这学期的体育成绩=91×20%+90×30%+81×10%=88.1(分).
故答案为88.1.
此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.
13、5
【解析】
由条件可先求得MN=AP,则可确定出当P点运动到点C时,PA有最大值,即可求得MN的最大值
【详解】
∵M为AE中点,N为EP中点
∴MN为△AEP的中位线,
∴MN= AP
若要MN最大,则AP最大.
P在CD上运动,当P运动至点C时PA最大,
此时PA=CA是矩形ABCD的对角线
AC==10,
MN的最大值= AC=5
故答案为5
此题考查了三角形中位线定理和矩形的性质,解题关键在于先求出MN=AP
三、解答题(本大题共5个小题,共48分)
14、 (1)14;(2)乙距起点2100米;(3)BC所在直线的函数关系式为s=2t-300.
【解析】
(1)设乙的速度为x米/秒,根据图象得到300+150×12=150x,解方程即可;
(2)由图象可知乙用了150秒追上甲,用时间乘以速度即可;
(3)先计算出乙完成全程所需要的时间为=250(秒),则乙追上甲后又用了250−150=100秒到达终点,所以这100秒他们相距100×(14−12)米,可得到C点坐标,而B点坐标为(150,0),然后利用待定系数法求线段BC所在直线的函数关系式即可.
【详解】
解:(1)设乙的速度为x米/秒,
则300+150×12=150x,
解得x=14,
故答案为:14.
(2)由图象可知乙用了150秒追上甲,14×150=2100(米).
∴当乙追上甲吋,乙距起点2100米.
(3)乙从出发到终点的时间为=250(秒),
此时甲、乙的距离为:(250-150)(14-12)=200(米),
∴C点坐标为 (250,200),B点坐标为(150,0)
设BC所在直线的函数关系式为s=kt+b(k0,k,b为常数),
将B、C两点代入,得,
解得
∴BC所在直线的函数关系式为s=2t-300.
本题考查了一次函数的应用及待定系数法求一次函数的解析式:先设一次函数的解析式为y=kx+b(k≠0),然后把一次函数图象上的两点的坐标分别代入,得到关于k、b的方程组,解方程组求出k、b的值,从而确定一次函数的解析式.也考查了从函数图象获取信息的能力.
15、(1) (2)
【解析】
(1)利用公式法,先算出根的判别式,再根据公式解得两根即可;
(2)利用因式分解法将等号左边进行因式分解,即可解出方程.
【详解】
解:(1)由题可得:,
所以,
所以
整理可得,;
(2)
提公因式可得:
化简得:
解得:,;
故答案为:(1),(2),.
本题考查一元二次方程的解法,在解方程时要先观察方程是否可以用因式分解法去解,如果可以的话优先考虑因式分解法,如果不可以的话可以利用公式法,利用公式法时注意先算根的判别式,并且注意符号问题.
16、(1)证明见解析(2)成立,理由见解析
【解析】
(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.
(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.
【详解】
解:(1)证明:∵四边形ABCD是平行四边形,
∴DC∥AB,∠DCB=∠DAB=60°.
∴∠ADE=∠CBF=60°.
∵AE=AD,CF=CB,
∴△AED,△CFB是正三角形.
∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.
∴四边形AFCE是平行四边形.
(2)解:上述结论还成立.
证明:∵四边形ABCD是平行四边形,
∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.
∴∠ADE=∠CBF.
∵AE=AD,CF=CB,
∴∠AED=∠ADE,∠CFB=∠CBF.
∴∠AED=∠CFB.
又∵AD=BC,
在△ADE和△CBF中.
∠ADE=∠CBF,∠AED=∠CFB,AD=BC,
∴△ADE≌△CBF(AAS).
∴∠AED=∠BFC,∠EAD=∠FCB.
又∵∠DAB=∠BCD,
∴∠EAF=∠FCE.
∴四边形EAFC是平行四边形.
17、证明见解析.
【解析】
根据中位线的性质得到,再得到,故可证明.
【详解】
解:∵,分别为,的中点,
∴EF是△ABC的中位线,
∴.
∵,
∴.
∴
∴四边形是平行四边形.
此题主要考查平行四边形的判定,解题的关键是熟知三角形的中位线定理及平行四边形的判定方法.
18、(1)y=-2x+4;(2)S△BCM=1.
【解析】
(1)利用矩形的性质,得出点D坐标,再利用待定系数法求得函数解析式;
(2)由三角形的面积公式,即可解答.
【详解】
(1)∵在矩形ABCD中,AD=1,A(,0),B(2,0),
∴D(,1),C(2,1).
把B(2,0),D(,1)代入y=kx+b(k≠0)得:,解得:,
∴直线表达式为:y=-2x+4;
(2)连接CM.
∵B(2,0),
∴OB=2.
∴S△BCM=∙BC∙OB=×1×2=1.
本题主要考查待定系数法求一次函数解析式以及矩形的性质,掌握待定系数法,是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(0,7)或(0,-7)
【解析】
点P在y轴上,分两种情况:正方向和负方向,即可得出点P的坐标为(0,7)或(0,-7).
【详解】
∵点P在y轴上,分两种情况:正方向和负方向,点P到原点的距离为7
∴点P的坐标为(0,7)或(0,-7).
此题主要考查平面直角坐标系中点的坐标,只告知点到原点的距离,要分两种情况,不要遗漏.
20、5
【解析】
【分析】如图,连接AC、A′C,AA′,由矩形的性质和勾股定理求出AC长,由矩形的性质得出E是AC的中点,F是A′C的中点,证出EF是△ACA′的中位线,由三角形中位线定理得出EF=AA′,由等腰直角三角形的性质得出AA′=AC,即可得出结果.
【详解】如图,连接AC、A′C,AA′,
∵矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,
∴∠ACA′=90°,∠ABC=90°,
∴AC=,AC=BD=A′C=B′D′,
AC与BD互相平分,A′C与B′D′互相平分,
∵点E、F分别是BD、B′D′的中点,
∴E是AC的中点,F是A′C的中点,
∵∠ACA′=90°,∴△ACA′是等腰直角三角形,
∴AA′=AC==10,
∴EF=AA′=5,
故答案为5.
【点睛】本题考查了矩形的性质、旋转的性质、勾股定理、等腰直角三角形的判定与性质,三角形的中位线定理,熟练掌握矩形的性质,由三角形的中位线定理求出EF长是解决问题的关键.
21、① 一组邻边相等的矩形是正方形
【解析】
根据正方形的判定定理添加一个条件使得矩形是菱形即可.
【详解】
解:∵四边形ABCD是矩形,AB=BC,
∴矩形ABCD为正方形(一组邻边相等的矩形是正方形).
故答案为:①,一组邻边相等的矩形是正方形.
本题考查了正方形的判定定理,熟练掌握正方形的判定定理即可得到结论.
22、【答题空1】两组对边分别相等的四边形是平行四边形
【答题空2】有一个角是直角的平行四边形是矩形
【解析】
(1)∵AB=CD,EF=GH,
∴四边形为平行四边形.(两组对边相等的四边形为平行四边形)
(2)由(2)知四边形为平行四边形,
∵∠C为直角,
∴四边形为矩形.(一个角为直角的平行四边形为矩形)
根据平行四边形的判定,两组对边分别相等的四边形为平行四边形,即可得出②的结论,当把一个角变为直角时,根据一个角为直角的平行四边形为矩形即可得出③的结论.
23、
【解析】
由图可知:a<0,a﹣b<0,则原式=﹣a﹣(a﹣b)=﹣2a+b=.故答案为.
二、解答题(本大题共3个小题,共30分)
24、(1)m=90,n=0.3;(2)二;(3)40%.
【解析】
(1)由总数=某组频数÷频率计算出总人数,则m等于总数减去其它组的频数,再由频率之和为1计算n;
(2)由中位数的概念分析;
(3)由获奖率=莸奖人数÷总数计算.
【详解】
(1)总人数=30÷0.15=200人,
m=200﹣30﹣60﹣20=90,
n=1﹣0.15﹣0.45﹣0.1=0.3,
如图:
(2)由于总数有200人,中位数应为第100、101名的平均数,而第一组有30人,第二组有90人,故中位数落在第二组内;
(3)获奖率==40%,
答:获奖率是40%.
本题考查了利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.
25、 (1) y=10x+3000(x≥0,且x为整数);(2) 110件产品;(3) 超过150件.
【解析】
分析:(1).根据营销人员的工资由两部分组成,一部分为基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,得出y与x的函数关系式即可;(2).利用某营销员某月工资为4100元,可求出他销售了多少件产品;(3).根据月工资超过4500元,求不等式解集即可.
此题考查了一次函数的综合应用;关键是读懂题意得出y与x之间的函数关系式,进而利用等量关系分别求解;一次函数及其图像是初中代数中比较重要的内容.
详解:∵销售人员的工资由两部分组成,一部分为基本工资,每人每月3000元;
另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,
设营销员李亮月销售产品x件,他应得的工资为y元,
∴y=10x+3000(,且x为整数);
(2)∵若该销售员的工资为4100元,
则10x+3000=4100,解之得:x=110,
∴该销售员的工资为4100元,他这个月销售了110件产品;
(3)根据题意可得:解得,
∴要使每月工资超过4500元,该月的销售量应当超过150件.
点睛:本题考查了一次函数的性质,熟记性质,会灵活运用性质是解题的关键.
26、证明见解析
【解析】
试题分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.
证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.
∵在△ADE与△CBF中,AD=BC,∠ADE=∠CBF, DE=BF,
∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.
∴AE∥CF.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年浙江东阳数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省烟台市名校数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,四象限D.当时,随的增大而减小,解答题等内容,欢迎下载使用。
这是一份2024年山东省济宁市汶上县九上数学开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。