开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东青岛崂山区2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】

    山东青岛崂山区2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】第1页
    山东青岛崂山区2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】第2页
    山东青岛崂山区2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东青岛崂山区2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】

    展开

    这是一份山东青岛崂山区2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在一次编程比赛中,8位评委给参赛选手小李的打分如下:
    9.0,9.0,9.1 ,10.0 ,9.0,9.1,9.0,9.1.
    规定去掉一个最高分和一个最低分后的平均值做为选手的最后得分.小李的最后得分是( )
    A.9.0B.9.1C.9.1D.9.3
    2、(4分)在平面直角坐标系中,若点的坐标为,则点在( )
    A.第一象限.B.第二象限.C.第三象限D.第四象限
    3、(4分)抛物线的图象与坐标轴交点的个数是( )
    A.没有交点B.只有一个交点
    C.有且只有两个交点D.有且只有三个交点
    4、(4分)在平行四边形ABCD中,已知,,则它的周长为( )
    A.8B.10C.14D.16
    5、(4分)已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()
    A.,B.,C.,D.,
    6、(4分)如果直线y=kx+b经过一、三、四象限,那么直线y=bx+k经过第( )象限
    A.一、二、三B.一、二、四C.一、三、四D.二、三、四
    7、(4分)如图,已知点P是∠AOB平分线上的一点,∠AOB=60°,PD⊥OA ,M是OP的中点,DM=4 cm.若点C是OB上一个动点,则PC的最小值为( )cm.
    A.7B.6C.5D.4
    8、(4分)下列交通标志中,是中心对称图形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每人采集到5件,则这个小组平均每人采集标本___________件.
    10、(4分)已知四边形ABCD是平行四边形,下列结论中错误的有__________.①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形。
    11、(4分)已知关于函数,若它是一次函数,则______.
    12、(4分)要使分式的值为1,则x应满足的条件是_____
    13、(4分)如图①,如果 A1、A2、A3、A4 把圆周四等分,则以A1、A2、A3、A4为顶点的直角三角形4个;如图②,如果A1、A2、A3、A4、A5、A6 把圆周六等分,则以A1、A2、A3、A4、A5、A6 为点的直角三角形有 12 个;如果 A1、A2、A3、……A2n 把圆周 2n 等分,则以 A1、A2、A3、…A2n为顶点的直角三角形有__________个,
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在△ABC中,AB=BC,∠ABC=84°,点D是AC的中点,DE∥BC,求∠EDB的度数.
    15、(8分)解方程:=-.
    16、(8分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).
    小宇的作业:
    解:甲=(9+4+7+4+6)=6,
    s甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]
    =(9+4+1+4+0)
    =3.6
    甲、乙两人射箭成绩统计表
    (1)a=________,乙=________;
    (2)请完成图中表示乙成绩变化情况的折线;
    (3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.
    ②请你从平均数和方差的角度分析,谁将被选中.
    17、(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,连接CD,过E点作EF∥DC交BC的延长线于点F.
    (1)求证:四边形CDEF是平行四边形;
    (2)求四边形CDEF的周长.
    18、(10分)在平面直角坐标中,边长为 2 的正方形 OABC 的两顶点 A、C 分别在 y 轴、x 轴的正半轴上,点 O 在原点.现将正方形 OABC 绕 O 点顺时针旋转,当 A 点第一次落在直线 y=x 上时停止旋转,旋转过程中,AB 边交直线 y=x于点 M,BC 边交 x 轴于点 N(如图).
    (1)求边 OA 在旋转过程中所扫过的面积;
    (2)旋转过程中,当 MN 和 AC 平行时,求正方形 OABC 旋转的度数;
    (3)试证明在旋转过程中, △MNO 的边 MN 上的高为定值;
    (4)设△MBN 的周长为 p,在旋转过程中,p 值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出 p 的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为 .
    20、(4分)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为 .
    21、(4分)将直线y=2x+4沿y轴向下平移3个单位,则得到的新直线所对应的函数表达式为_____.
    22、(4分)一个弹簧不挂重物时长10cm,挂上重物后伸长的长度与所挂重物的质量成正比,如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为_____(不需要写出自变量取值范围)
    23、(4分)如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为_____cm1.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,菱形中,为对角线的延长线上一点.
    (1)求证:;
    (2)若,,,求的长.
    25、(10分)解不等式组,并把解集表示在下面的数轴上.
    26、(12分)如图所示,在边长为1个单位长度的小正方形组成的网格中,的顶点A、B、C在格点(网格线的交点)上.
    (1)将绕点B逆时针旋转,得到,画出;
    (2)以点A为位似中心放大,得到,使放大前后的三角形面积之比为1:4,请你在网格内画出.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    先去掉这8个数据中的最大数和最小数,再计算剩余6个数据的平均数即可.
    【详解】
    解:题目中8个数据的最高分是10.0分,最低分是9.0分,则小李的最后得分=(9.0+9.1+9.0+9.1+9.0+9.1)÷6=9.1分.
    故选:B.
    本题考查的是平均数的计算,正确理解题意、熟知平均数的计算方法是解题关键.
    2、D
    【解析】
    根据点的坐标为的横纵坐标的符号,可得所在象限.
    【详解】
    ∵2>0,-2<0,
    ∴点在位于平面直角坐标系中的第四象限.
    故选D.
    本题考查了平面直角坐标系中各象限内点的坐标的符号特征.四个象限内点的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    3、B
    【解析】
    试题分析:令,转化为一元二次方程,根据根的判别式来判断方程是否有根,即可判断图象与x轴的交点个数,再令,即可判断图象与y轴的交点情况,从而得到结果。
    令,得,

    ∴方程无解,即抛物线的图象与x轴没有交点,
    令,则,即抛物线的图象与y轴的交点坐标为(1,-1),
    综上,抛物线的图象与坐标轴交点的个数是一个,
    故选B.
    考点:本题考查的是抛物线与x轴的交点
    点评:解答本题的关键是熟练掌握当二次函数与x轴有两个交点时,b2-4ac>1,与x轴有一个交点时,b2-4ac=1,与x轴没有交点时,b2-4ac<1.
    4、D
    【解析】
    根据“平行四边形的对边相等”结合已知条件进行分析解答即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB=CD=5,AD=BC=3,
    ∴平行四边形ABCD的周长=AB+BC+CD+AD=5+3+5+3=16
    故选D.
    本题考查 “平行四边形的对边相等”是解答本题的关键.
    5、A
    【解析】
    试题解析:一次函数y=kx+b-x即为y=(k-1)x+b,
    ∵函数值y随x的增大而增大,
    ∴k-1>1,解得k>1;
    ∵图象与x轴的正半轴相交,
    ∴图象与y轴的负半轴相交,
    ∴b<1.
    故选A.
    6、B
    【解析】
    根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
    【详解】
    解:已知直线y=kx+b经过第一、三、四象限,
    则得到k>0,b<0,
    那么直线y=bx+k经过第一、二、四象限,
    故选:B.
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    7、D
    【解析】
    根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而的到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.
    【详解】
    ∵点P是∠AOB平分线上的一点,

    ∵PD⊥OA,M是OP的中点,


    ∵点C是OB上一个动点
    ∴当时,PC的值最小
    ∵OP平分∠AOB,PD⊥OA,
    ∴最小值,
    故选:D.
    本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.
    8、D
    【解析】
    根据中心对称图形的概念判断即可.
    【详解】
    A、不是中心对称图形;
    B、不是中心对称图形;
    C、不是中心对称图形;
    D、是中心对称图形.
    故选D.
    本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4
    【解析】
    分析:根据加权平均数的计算公式计算即可.
    详解:.
    故答案为:4.
    点睛: 本题重点考查了加权平均数的计算公式,加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).
    10、④
    【解析】
    根据菱形的判定方法、矩形的判定方法及正方形的判定方法依次判断后即可解答.
    【详解】
    ①根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,四边形ABCD是菱形,①正确;
    ②根据对角线互相垂直的平行四边形是菱形可知::四边形ABCD是平行四边形,当AC⊥BD时,四边形ABCD是菱形,②正确;
    ③根据有一个角是直角的平行四边形是矩形可知③正确;
    ④根据对角线相等的平行四边形是矩形可知,当AC=BD时,平行四边形ABCD是矩形,不是正方形,④错误;
    综上,不正确的为④.
    故答案为④.
    本题考查了菱形、矩形及正方形的判定方法,熟练运用菱形、矩形及正方形的判定方法是解决问题的关键.
    11、
    【解析】
    根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2,可得答案.
    【详解】
    由y=是一次函数,得
    m2-24=2且m-2≠0,
    解得m=-2,
    故答案为:-2.
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2.
    12、x=-1.
    【解析】
    根据题意列出方程即可求出答案.
    【详解】
    由题意可知:=1,
    ∴x=-1,
    经检验,x=-1是原方程的解.
    故答案为:x=-1.
    本题考查解分式方程,注意,别忘记检验,本题属于基础题型.
    13、2n(n-1)
    【解析】
    根据圆周角定理找到直径所对的圆周角是直角,然后由一条直径所对的直角数来寻找规律.
    【详解】
    解:由圆周角定理知,直径所对的圆周角是直角.
    ∴当A1、A2、A3、A4把圆周四等分时,该圆中的直径有A1A3,A2A4两条,
    ∴①当以A1A3为直径时,有两个直角三角形;
    ②当以A2A4为直径时,有两个直角三角形;
    ∴如果A1、A2、A3、A4把圆周四等分,则以A1、A2、A3、A4为顶点的直角三角形有(4÷2)×(4-2)=4个;
    当A1、A2、A3、A4、A5、A6把圆周六等分,则以A1、A2、A3、A4、A5、A6为顶点的直角三角形有(6÷2)×(6-2)=12个;
    当A1、A2、A3、…A2n把圆周2n等分,则以A1、A2、A3、…A2n为顶点的直角三角形有(2n÷2)×(2n-2)=2n(n-1)个.
    故答案是:2n(n-1).
    本题考查圆周角定理:直径所对的圆周角是直角.解答该题是关键是根据直径的条数、顶点的个数来寻找规律.
    三、解答题(本大题共5个小题,共48分)
    14、∠EDB=42°.
    【解析】
    试题分析:因为BD是∠ABC的平分线,所以∠ABD=∠CBD,所以∠DBC=84°÷2=42°,因为DE∥BC,所以∠EDB=∠DBC=42°.
    试题解析:
    ∵BD是∠ABC的平分线,
    ∴∠ABD=∠CBD,
    ∴∠DBC=84°÷2=42°,
    ∵DE∥BC,
    ∴∠EDB=∠DBC=42°.
    点睛:掌握角平分线的性质以及平行线的性质.
    15、
    【解析】
    先确定最简公分母是,将方程两边同时乘以最简公分母约去分母可得:,然后解一元一次方程,最后再代入最简公分母进行检验.
    【详解】
    去分母得:,
    解得:,
    经检验是分式方程的解.
    本题主要考查解分式方程的方法,解决本题的关键是要熟练掌握解分式方程的方法和步骤.
    16、(1)4 6 (2)见解析 (3)①乙 1.6,判断见解析 ②乙,理由见解析
    【解析】
    解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,
    则a=30-7-7-5-7=4,
    乙=30÷5=6,
    所以答案为:4,6;
    (2)如图所示:
    (3)①观察图,可看出乙的成绩比较稳定,所以答案为:乙;
    s乙2=[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6
    由于s乙2<s甲2,所以上述判断正确.
    ②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.
    17、 (1)证明见解析;(2)四边形CDEF的周长为2+2.
    【解析】
    (1)直接利用三角形中位线定理得出,再利用平行四边形的判定方法得出答案;
    (2)利用等边三角形的性质结合平行四边形的性质得出,进而求出答案.
    【详解】
    (1)证明:、分别为、的中点,
    是的中位线,


    四边形是平行四边形;
    (2)解:四边形是平行四边形,

    为的中点,等边的边长是2,
    ,,,

    四边形的周长.
    此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握平行四边形的性质是解题关键.
    18、(1)OA 在旋转过程中所扫过的面积为 0.5π ;(1)旋转过程中,当 MN 和 AC 平行时,正方形 OABC 旋转的度数为 25°-11.5°=11.5 度;(3)MN 边上的高为 1(2)在旋转正方形 OABC 的过程中,p 值无变化.见解析.
    【解析】
    (1)过点M作MH⊥y轴,垂足为H,如图1,易证∠MOH=25°,然后运用扇形的面积公式就可求出边OA在旋转过程中所扫过的面积.
    (1)根据正方形和平行线的性质可以得到AM=CN,从而可以证到△OAM≌△OCN.进而可以得到∠AOM=∠CON,就可算出旋转角∠HOA的度数.
    (3)过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,易证△OAE≌△OCN,从而得到OE=ON,AE=CN,进而可以证到△OME≌△OMN,从而得到∠OME=∠OMN,然后根据角平分线的性质就可得到结论.
    (2)由△OME≌△OMN(已证)可得ME=MN,从而可以证到MN=AM+CN,进而可以推出p=AB+BC=2,是定值.
    【详解】
    解:(1)过点M作MH⊥y轴,垂足为H,如图1,
    ∵点M在直线y=x上,
    ∴OH=MH.
    在Rt△OHM中,
    ∵tan∠MOH= =1,
    ∴∠MOH=25°.
    ∵A点第一次落在直线y=x上时停止旋转,
    ∴OA旋转了25°.
    ∵正方形OABC的边长为1,
    ∴OA=1.
    ∴OA在旋转过程中所扫过的面积为 =0.5π.∵A 点第一次落在直线 y=x 上时停止旋转,∴OA 旋转了 25 度.
    ∴OA 在旋转过程中所扫过的面积为 0.5π .
    (1)∵MN∥AC,∴∠BMN=∠BAC=25°,∠BNM=∠BCA=25 度.
    ∴∠BMN=∠BNM.BM=BN.
    又∵BA=BC,AM=CN.
    又∵OA=OC,∠OAM=∠OCN,
    ∴△OAM ≌△OCN.∴∠AOM=∠CON.
    ∴∠AOM= 1/1(90°-25°)=11.5 度.
    ∴旋转过程中,当 MN 和 AC 平行时,正方形 OABC 旋转的度数为 25°-11.5°=11.5 度.
    (3)证明:过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,
    则∠AOE=25°-∠AOM,∠CON=90°-25°-∠AOM=25°-∠AOM.
    ∴∠AOE=∠CON.
    在△OAE和△OCN中,

    ∴△OAE≌△OCN(ASA).
    ∴OE=ON,AE=CN.
    在△OME和△OMN中
    ∴△OME≌△OMN(SAS).
    ∴∠OME=∠OMN.
    ∵MA⊥OA,MF⊥OF,
    ∴OF=OA=1.
    ∴在旋转过程中,△MNO的边MN上的高为定值.MN 边上的高为 1;
    (2)在旋转正方形OABC的过程中,p值不变化.
    证明:延长 BA 交 y 轴于 E 点,则∠AOE=25°-∠AOM,
    ∠CON=90°-25°-∠AOM=25°-∠AOM,
    ∴∠AOE=∠CON.
    又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.
    ∴△OAE ≌△OCN.
    ∴OE=ON,AE=CN.
    又∵∠MOE=∠MON=25°,OM=OM,
    ∴△OME ≌△OMN.
    ∴MN=ME=AM+AE.∴MN=AM+CN,
    ∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.
    ∴在旋转正方形 OABC 的过程中,p 值无变化.
    故答案为:(1)OA 在旋转过程中所扫过的面积为 0.5π ;(1)旋转过程中,当 MN 和 AC 平行时,正方形 OABC 旋转的度数为 25°-11.5°=11.5 度;(3)MN 边上的高为 1(2)在旋转正方形 OABC 的过程中,p 值无变化.见解析.
    本题考查正方形的性质、全等三角形的判定与性质、角平分线的性质、平行线的性质、扇形的面积公式、等腰三角形的判定、特殊角的三角函数值等知识,有一定的综合性.而本题在图形旋转的过程中探究不变的量,渗透了变中有不变的辩证思想.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、7
    【解析】
    试题分析:如图,过点A做BC边上高,所以EP AM,所以∆BFP~∆BAM,∆CAM~CEP,因为AF=2,BF=3,AB=AC=5,所以, BM=CM,所以 ,因此CE=7
    20、y=﹣1x
    【解析】
    试题分析:根据点在直线上点的坐标满足方程的关系,把点A的坐标代入函数解析式求出k值即可得解:
    ∵正比例函数y=kx的图象经过点A(﹣1,1),
    ∴﹣k=1,即k=﹣1.
    ∴正比例函数的解析式为y=﹣1x.
    21、y=2x+1
    【解析】
    根据函数的平移规律,利用口诀上加下减,可得答案.
    【详解】
    解:直线y=2x+4经过点(0,4),将直线下平移3个单位,则点(0,4)也向下平移了3个单位,则平移后的直线经过点(0,1),
    ∵平移后的直线与原直线平行,
    ∴平移后的直线设为y=2x+k,
    ∵ y=2x+k过点(0,1),代入点(0,1)得k=1,
    ∴新直线为y=2x+1
    故答案为:y=2x+1
    本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.
    22、y=3x+1
    【解析】
    根据题意可知,弹簧总长度y(cm)与所挂物体质量x(kg)之间符合一次函数关系,可设y=kx+1.代入求解.
    【详解】
    弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为y=3x+1,
    故答案为y=3x+1
    此题考查根据实际问题列一次函数关系式,解题关键在于列出方程
    23、2
    【解析】
    根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.
    【详解】
    解:∵DE是△ABC的中位线,
    ∴DE∥BC,BC=1DE=10cm;
    由折叠的性质可得:AF⊥DE,
    ∴AF⊥BC,
    ∴S△ABC=BC×AF=×10×8=2cm1.
    故答案为2.
    本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)
    【解析】
    (1)根据菱形的性质,证明即可解答
    (2)作于,利用勾股定理得出,作于,设,,根据勾股定理得出,,把数值代入即可
    【详解】
    (1)证明:∵四边形是菱形,为对角线

    在和中,
    ∵,∠ABE=∠CBE,


    (2)作于,∴,
    ∵,∴,∴,
    ∴,
    ∴,
    ∵,∴,
    ∴,
    作于,设,
    ∴ ∴



    ∴ ∴

    此题考查菱形的性质,全等三角形的判定与性质,勾股定理,三角形内角和,解题关键在于作辅助线
    25、,数轴见解析
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    解:解不等式x﹣2(x﹣3)≥5,得:,
    解不等式+1,得:,
    则不等式组的解集为,
    将不等式组的解集表示在数轴上如下:
    本题主要考查解不等式组,掌握解不等式组的方法及用数轴表示不等式解集的方法是解题的关键.
    26、 (1)见解析;(2)见解析
    【解析】
    (1)分别作出点A、C绕点B逆时针旋转90°所得对应点,再顺次连接即可得;
    (2)分别作出点B、C变换后的对应点,再顺次连接即可得.
    【详解】
    (1)如图所示,△A1BC1即为所求.
    (2)如图所示,△AB2C2即为所求.
    考查作图-旋转变换、位似变换,解题的关键是掌握旋转变换和位似变换的定义与性质.
    题号





    总分
    得分
    第1次
    第2次
    第3次
    第4次
    第5次
    甲成绩
    9
    4
    7
    4
    6
    乙成绩
    7
    5
    7
    a
    7

    相关试卷

    2025届山东省青岛市名校数学九年级第一学期开学教学质量检测试题【含答案】:

    这是一份2025届山东省青岛市名校数学九年级第一学期开学教学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省青岛五校联考数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024年山东省青岛五校联考数学九上开学教学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省青岛市崂山区部分中学数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024年山东省青岛市崂山区部分中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map