|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省滨州市集团学校2024年九上数学开学质量跟踪监视模拟试题【含答案】
    立即下载
    加入资料篮
    山东省滨州市集团学校2024年九上数学开学质量跟踪监视模拟试题【含答案】01
    山东省滨州市集团学校2024年九上数学开学质量跟踪监视模拟试题【含答案】02
    山东省滨州市集团学校2024年九上数学开学质量跟踪监视模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省滨州市集团学校2024年九上数学开学质量跟踪监视模拟试题【含答案】

    展开
    这是一份山东省滨州市集团学校2024年九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知点,点都在直线上,则,的大小关系是( )
    A.B.C.D.无法确定
    2、(4分)已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为( )
    A.﹣1B.0C.1D.3
    3、(4分)一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为( )
    A.B.13C.6D.25
    4、(4分)把边长为3的正方形绕点A顺时针旋转45°得到正方形,边与交于点O,则四边形的周长是( )
    A.6B.C.D.
    5、(4分)一个多边形的内角和是外角和的2倍,这个多边形是( )
    A.四边形B.五边形C.六边形D.八边形
    6、(4分)如图,,点D在AB的垂直平分线上,点E在AC的垂直平分线上,则的度数是( ).
    A.15°B.20°C.25°D.30°
    7、(4分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有名学生,他们的决赛成绩如下表所示:
    那么名学生决赛成绩的众数和中位数分别是( )
    A.,B.,C.,D.,
    8、(4分)如图所示,某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3h后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y)是时间(x)的函数,那么这个函数的大致图像只能是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)分解因式:__________.
    10、(4分)反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是_____(用“<“连接).
    11、(4分)计算: +×=________.
    12、(4分)如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_____cm.
    13、(4分)若关于x的一元一次不等式组的的解集为,则a的取值范围是___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知函数.
    (1)若这个函数的图象经过原点,求的值
    (2)若这个函数的图象不经过第二象限,求的取值范围.
    15、(8分)按要求解不等式(组)
    (1)求不等式的非负整数解.
    (2)解不等式组,并把它的解集在数轴上表示出来.
    16、(8分)如图1,在平面直角坐标系中直线与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转得到CD,此时点D恰好落在直线AB上时,过点D作轴于点E.
    求证:≌;
    如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;
    若点P在y轴上,点Q在直线AB上是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.
    17、(10分)在平面直角坐标系中,点A,B分别是x轴正半轴与y轴正半轴上一点,OA=m,OB=n,以AB为边在第一象限内作正方形ABCD.
    (1)若m=4,n=3,直接写出点C与点D的坐标;
    (2)点C在直线y=kx(k>1且k为常数)上运动.
    ①如图1,若k=2,求直线OD的解析式;
    ②如图2,连接AC、BD交于点E,连接OE,若OE=2OA,求k的值.
    18、(10分)我市某游乐场在暑假期间推出学生个人门票优惠活动,各类门票价格如下表:
    某慈善单位欲购买三种类型的门票共张奖励品学兼优的留守学生,设购买种票张,种票张数是种票的倍还多张,种票张,根据以上信息解答下列问题:
    (1)写出y与x之间的函数关系式;
    (2)设购票总费用为元,求(元)与(张)之间的函数关系式;
    (3)为方便学生游玩,计划购买学生的夜场票不低于张,且节假日通用票至少购买张,有哪几种购票方案?哪种方案费用最少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在正方形ABCD中,延长BC至E,使CE=CA,则∠E的度数是_____.
    20、(4分)已知关于的一元二次方程有两个相等的实数根,则的值是__________.
    21、(4分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm.
    22、(4分)关于x的方程3x+a=x﹣7的根是正数,则a的取值范围是_____.
    23、(4分)若,,则的值是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在□ABCD中,∠B=60°.
    (1)作∠A的角平分线与边BC交于点E(用尺规作图,保留作图痕迹,不要求写作法);
    (2)求证:△ABE是等边三角形.
    25、(10分)已知一次函数y=(m+2)x+3- m,
    (1)m为何值时,函数的图象经过坐标原点?
    (2)若函数图象经过第一、二、三象限,求m的取值范围.
    26、(12分)某服装公司招工广告承诺:熟练工人每月工资至少4000元.每天工作8小时,一个月工作25天.月工资底薪1000元,另加计件工资.加工1件A型服装计酬20元,加工1件B型服装计酬15元.在工作中发现一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时.(工人月工资=底薪+计件工资)
    (1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?
    (2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据一次函数的性质,当k<0时,y随x的增大而减小,可以解答本题.
    【详解】
    解:∵y=-3x+2,k=-3<0,
    ∴y随x的增大而减小,
    ∵点A(-1,y1),B(2,y2)都在直线y=-3x+2上,
    ∴y1>y2,
    故选:A.
    本题考查一次函数y=kx+b(k≠0,且k,b为常数)的图象性质:当k>0时,y随x的增大而增大;当k<0时,y将随x的增大而减小.
    2、D
    【解析】
    分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆ =b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.
    详解:由题意得,
    (-4)2-4(c+1)=0,
    c=3.
    故选D.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆ =b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    3、A
    【解析】
    试题分析:∵直角三角形的两条直角边的长分别为5,12,
    ∴斜边为=13,
    ∵S△ABC=×5×12=×13h(h为斜边上的高),
    ∴h=.
    故选A.
    4、B
    【解析】
    由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.
    【详解】
    连接BC′,
    ∵旋转角∠BAB′=45∘,∠BAD′=45°,
    ∴B在对角线AC′上,
    ∵B′C′=AB′=3,
    在Rt△AB′C′中,AC′= =3,
    ∴BC′=3−3,
    在等腰Rt△OBC′中,OB=BC′=3−3,
    在直角三角形OBC′中, OC′= (3−3)=6−3,
    ∴OD′=3−OC′=3−3,
    ∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3−3+3−3=6.
    故选:B.
    此题考查正方形的性质,旋转的性质,解题关键在于利用勾股定理的知识求出BC′的长
    5、C
    【解析】
    此题可以利用多边形的外角和和内角和定理求解.
    【详解】
    解:设所求多边形边数为n,由题意得
    (n﹣2)•180°=310°×2
    解得n=1.
    则这个多边形是六边形.
    故选C.
    本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于310°,n边形的内角和为(n﹣2)•180°.
    6、B
    【解析】
    根据线段的垂直平分线的性质得到DB=DA,EC=EA,根据等腰三角形的性质解答即可.
    【详解】
    解:∵AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,
    ∴DB=DA,EC=EA,
    ∵∠BAC=100°,
    ∴∠B+∠C=80°,
    ∵DB=DA,EC=EA,
    ∴∠DAB=∠B,∠EAC=∠C,
    ∴∠DAB+∠EAC=80°,
    ∴∠DAE=100°-80°=20°,故选B.
    本题考查了三角形内角和定理,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
    7、B
    【解析】
    根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.
    【详解】
    ∵85分的有8人,人数最多,
    ∴众数为85分;
    ∵处于中间位置的数为第10、11两个数为85分,90分,
    ∴中位数为87.5分.
    故选B.
    本题考查了众数与中位数的意义,该组数据中出现次数最多的数为众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,解决问题时如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    8、A
    【解析】
    分析:根据题意中的生产流程,发现前三个小时是生产时间,所以未装箱的产品的数量是增加的,后开始装箱,每小时装的产品比每小时生产的产品数量多,所以未装箱的产品数量是下降的,直至减为零.
    详解:由题意,得前三个小时是生产时间,所以未装箱的产品的数量是增加的.
    ∵3小时后开始装箱,每小时装的产品比每小时生产的产品数量多,∴3小时后,未装箱的产品数量是下降的,直至减至为零.
    表现在图象上为随着时间的增加,图象是先上升后下降至0的.
    故选A.
    点睛:本题考查了的实际生活中函数的图形变化,属于基础题.解决本题的主要方法是根据题意判断函数图形的大致走势,然后再下结论,本题无需计算,通过观察看图,做法比较新颖.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    先提取a,再根据平方差公式即可因式分解.
    【详解】
    故填:.
    此题主要考查因式分解,解题的关键是熟知公式法与提取公因式法因式分解.
    10、.
    【解析】
    根据反比例函数的k确定图象在哪两个象限,再根据(x1,y1),(x2,y2),其中,确定这两个点均在第一象限,根据在第一象限内y随x的增大而减小的性质做出判断.
    【详解】
    解:反比例函数y=图象在一、三象限,
    (x1,y1),(x2,y2)在反比例函数y=图象上,且,
    因此(x1,y1),(x2,y2)在第一象限,
    ∵反比例函数y=在第一象限y随x的增大而减小,
    ∴,
    故答案为:.
    本题考查了反比例函数的增减性,熟悉反比例函数的图象与性质是解题的关键.
    11、3
    【解析】
    先根据二次根式的乘法法则运算,然后化简后合并即可.
    【详解】
    解:原式=2+
    =3.
    故答案为:3.
    本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.
    12、8
    【解析】
    先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.
    【详解】
    (),
    由勾股定理得(),
    则玻璃棒露在容器外的长度的最小值是().
    故答案为.
    考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.
    13、.
    【解析】
    不等式待定系数的取值范围就是已知不等式或不等式组的解集或特殊解,确定不等式中未知数的系数的取值范围.
    【详解】
    由得
    因为解集为
    所以
    故答案为:
    考核知识点:不等式组解集.会解不等式组是关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)的值为3;(2)的取值范围为:.
    【解析】
    (1)将原点坐标(0,0)代入解析式即可得到m的值;
    (2)分两种情况讨论:当2m+1=0,即m=-,函数解析式为:y=-,图象不经过第二象限;当2m+1>0,即m>-,并且m-3≤0,即m≤3;综合两种情况即可得到m的取值范围.
    【详解】
    (1)将原点坐标(0,0)代入解析式,得m−3=0,即m=3,
    所求的m的值为3;
    (2)当2m+1=0,即m=−,函数解析式为:y=−,图象不经过第二象限;
    ②当2m+1>0,即m>−,并且m−3⩽0,即m⩽3,所以有−所以m的取值范围为.
    此题考查一次函数的性质,一次函数图象上点的坐标特征,解题关键在于原点坐标(0,0)代入解析式.
    15、(1)非负整数解为1、2、3、4;(2)-3<x≤1,数轴上表示见解析
    【解析】
    (1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
    (2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    (1)5(2x+1)≤3(3x-2)+15,
    10x+5≤9x-6+15,
    10x-9x≤-6+15-5,
    x≤4,
    则不等式的非负整数解为1、2、3、4;
    (2)解不等式2(x-3)<4x,得:x>-3,
    解不等式,得:x≤1,
    则不等式组的解集为-3<x≤1,
    将不等式组的解集表示在数轴上如下:
    考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    16、(1)证明见解析;(2)平移的距离是个单位.(3)点Q的坐标为或或
    【解析】
    根据AAS或ASA即可证明;
    首先求出点D的坐标,再求出直线的解析式,求出点的坐标即可解决问题;
    如图3中,作交y轴于P,作交AB于Q,则四边形PCDQ是平行四边形,求出直线PC的解析式,可得点P坐标,点C向左平移1个单位,向上平移个单位得到P,推出点D向左平移1个单位,向上平移个单位得到Q,再根据对称性可得、的坐标;
    【详解】
    证明:,
    ,,


    ≌.
    ≌,
    ,,

    把代入得到,,



    ,,
    直线BC的解析式为,
    设直线的解析式为,把代入得到,
    直线的解析式为,


    平移的距离是个单位.
    解:如图3中,作交y轴于P,作交AB于Q,则四边形PCDQ是平行四边形,
    易知直线PC的解析式为,

    点C向左平移1个单位,向上平移个单位得到P,
    点D向左平移1个单位,向上平移个单位得到Q,

    当CD为对角线时,四边形是平行四边形,可得,
    当四边形为平行四边形时,可得,
    综上所述,满足条件的点Q的坐标为或或
    本题考查一次函数综合题、平行四边形的判定和性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移、对称等性质解决问题,属于中考压轴题.
    17、(1)C(3,7),D(7,4);(2)①y=x;②.
    【解析】
    (1)根据题意把m=4,n=3代入解答即可;
    (2)①利用待定系数法确定函数关系式即可;
    ②根据B、D坐标表示出E点坐标,由勾股定理可得到m、n之间的关系式,用m表示出C点坐标,根据函数关系式解答即可.
    【详解】
    解:(1)∵OA=m,OB=n,以AB为边在第一象限内作正方形ABCD,
    ∴C(n,m+n),D(m+n,m),
    把m=4,n=3代入可得:
    C(3,7),D(7,4),
    (2)①设C(a,2a),由题意可得:,
    解得:m=n=a,
    ∴D(2a,a),
    ∴直线OD的解析式为:y=x,
    ②由B(0,n),D(m+n,m),
    可得:E(,),OE=OA,
    ∴()2+()2=8m2,
    可得:(m+n)2=16m2,
    ∴m+n=4m,n=3n,
    ∴C(3m,4m),
    ∴直线OC的解析式为:y=x,
    可得:k=.
    故答案为(1)C(3,7),D(7,4);(2)①y=x;②.
    此题是考查一次函数的综合题,关键是根据待定系数法确定函数关系式和勾股定理解答.
    18、(1);(2);(3)共有种购票方案:;;;当种票为张,种票张,种票为张时费用最少,最少费用元.
    【解析】
    (1)根据三种门票共购买100张,即可找出x与y之间的函数关系式;
    (2)根据购票总费用=30×购买A种票数量+50×购买B种票数量+80×购买C种票数量,即可找出W(元)与x(张)之间的函数关系式;
    (3)根据购买A种票不低于24张、C种票至少5张,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再利用一次函数的性质即可解决最值问题.
    【详解】
    解:根据题意,
    所以

    依题意得
    解得
    因为整数为
    所以共有种购票方案,分别为



    因为
    所以随的增大而减小,
    所以当时,
    即当种票为张,种票张,种票为张时费用最少,最少费用元
    本题考查了一次函数的应用以及一元一次不等式组的应用,解题的关键是:(1)根据三种门票共购买100张,找出y与x之间的函数关系式;(2)根据购票总费用=30×购买A种票数量+50×购买B种票数量+80×购买C种票数量,找出W与x之间的函数关系式;(3)根据购买A、C两种门票张数的范围,列出关于x的一元一次不等式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、22.5°
    【解析】
    根据正方形的性质就有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=∠E=22.5°.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠ACD=∠ACB=45°.
    ∵∠ACB=∠CAE+∠AEC,
    ∴∠CAE+∠AEC=45°.
    ∵CE=AC,
    ∴∠CAE=∠E=22.5°.
    故答案为22.5°
    本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.
    20、
    【解析】
    根据方程有两个相等的实数根,可得b2-4ac=0,方程化为一般形式后代入求解即可.
    【详解】
    原方程化为一般形式为:mx2+(2m+1)x=0,
    ∵方程有两个相等的实数根
    ∴(2m+1)2-4m×0=0
    本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.
    21、55
    【解析】
    利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.
    【详解】
    设长为8x,高为11x,
    由题意,得:19x+20≤115,
    解得:x≤5,
    故行李箱的高的最大值为:11x=55,
    答:行李箱的高的最大值为55厘米.
    此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.
    22、a<﹣7
    【解析】
    求出方程的解,根据方程的解是正数得出>0,求出即可.
    【详解】
    解:3x+a=x-7
    3x-x=-a-7
    2x=-a-7
    x=,
    ∵>0,
    ∴a<-7,
    故答案为:a<-7
    本题考查解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.
    23、2
    【解析】
    提取公因式因式分解后整体代入即可求解.
    【详解】
    .
    故答案为:2.
    此题考查因式分解的应用,解题关键在于分解因式.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(1)见解析
    【解析】
    (1)作∠A的角平分线与边BC交于点E即可;
    (1)根据平行四边形的性质即可证明△ABE是等边三角形.
    【详解】
    解:(1)如图
    (1)如图,∵四边形是平行四边形,
    ∴,
    ∴∠1=∠1.
    ∵AE平分∠BAD,
    ∴∠1=∠3,
    ∴∠1=∠3,
    ∴AB=EB.
    ∵∠B=60°,
    ∴△ABE是等边三角形.
    本题考查了作图-基本作图、等边三角形的判定、平行四边形的性质,解决本题的关键是掌握以上知识.
    25、(1)m=3;(2)
    【解析】
    (1)由题意将原点(0,0)代入一次函数y=(m+2)x+3- m,并求解即可;
    (2)根据题意函数图象经过第一、二、三象限,可知以及,解出不等式组即可.
    【详解】
    解:(1)∵由函数的图象经过坐标原点,可得将(0,0)代入一次函数y=(m+2)x+3- m满足条件;
    ∴,解得.
    (2)∵函数图象经过第一、二、三象限,
    ∴,解得:.
    本题考查一次函数图象的性质以及解不等式组,熟练掌握一次函数图象的性质以及解不等式组的方法是解题的关键.
    26、 (1)一名熟练工加工1件A型服装和1件B型服装各需要2小时和1小时;(2)该服装公司执行规定后违背了广告承诺.
    【解析】
    (1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,根据“一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时”,列出方程组,即可解答.
    (2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8-2a)件.从而得到W=﹣10a+4000,再根据“加工A型服装数量不少于B型服装的一半”,得到a≥50,利用一次函数的性质,即可解答.
    【详解】
    解:(1) 设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,
    由题意得:
    解得:
    答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.
    (2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.
    ∴W=20a+15(25×8﹣2a)+1000,
    ∴W=﹣10a+4000,
    又∵
    解得:a≥50,
    ∵﹣10<0,
    ∴W随着a的增大则减小,
    ∴当a=50时,W有最大值1.
    ∵1<4000,
    ∴该服装公司执行规定后违背了广告承诺.
    考查一次函数的应用, 二元一次方程组的应用, 一元一次不等式的应用,读懂题目,列出方程是解题的关键.
    题号





    总分
    得分
    批阅人
    决赛成绩/分
    人数
    相关试卷

    2025届湖南长郡教育集团九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2025届湖南长郡教育集团九上数学开学质量跟踪监视模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省惠州市英华学校数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2025届广东省惠州市英华学校数学九上开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省青岛42中九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024年山东省青岛42中九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map