终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    山东省昌乐县2024-2025学年数学九年级第一学期开学综合测试试题【含答案】

    立即下载
    加入资料篮
    山东省昌乐县2024-2025学年数学九年级第一学期开学综合测试试题【含答案】第1页
    山东省昌乐县2024-2025学年数学九年级第一学期开学综合测试试题【含答案】第2页
    山东省昌乐县2024-2025学年数学九年级第一学期开学综合测试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省昌乐县2024-2025学年数学九年级第一学期开学综合测试试题【含答案】

    展开

    这是一份山东省昌乐县2024-2025学年数学九年级第一学期开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,两个大小不同的正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,两个正方形重叠部分的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )
    A.B.C.D.
    2、(4分)如图,平行四边形ABCD中,对角线AC与BD交于O,AC=6,BD=8,AB=5,则△BOC的周长是( )
    A.12B.11C.14D.15
    3、(4分)如图,在矩形ABCD中,M是BC边上一点,连接AM,过点D作,垂足为若,,则BM的长为
    A.1B.C.D.
    4、(4分)下列各曲线中不能表示y是x函数的是( )
    A.B.C.D.
    5、(4分)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )
    A.B.
    C.D.
    6、(4分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )
    A.极差是47B.众数是42
    C.中位数是58D.每月阅读数量超过40的有4个月
    7、(4分)如图,在中,对角线与相交于点,是边的中点,连接,若,,则( )
    A.80°B.90°C.100°D.110°
    8、(4分)我县某贫围户2016年的家庭年收入为4000元,由于党的扶贫政策的落实,2017、2018年家庭年收入增加到共15000元,设平均每年的增长率为x,可得方程( )
    A.4000(1+x)2=15000B.4000+4000(1+x)+4000(1+x)2=15000
    C.4000(1+x)+4000(1+x)2=15000D.4000+4000(1+x)2=15000
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,平行四边形的对角线相交于点,且,平行四边形的周长为8,则的周长为______.
    10、(4分)如图, 和都是等腰直角三角形, ,的顶点在的斜边上,若,则____.
    11、(4分)如图, ,分别平分与,,,则与之间的距离是__________.

    12、(4分)如图△ABC中,∠BAC=90°,将△ABC绕点A按顺时针方向旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上,若AC=4,∠B=60∘,则CD的长为____
    13、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.
    (1)当时,求关于工的函数表达式,
    (2)求点的坐标.
    (3)求高铁在时间段行驶的路程.
    15、(8分)己知:,,求下列代数式的值:
    (1);
    (2).
    16、(8分)已知:一个正比例函数与一个一次函数的图象交于点A(1,4)且一次函数的图象与x轴交于点B(3,0),坐标原点为O.
    (1)求正比例函数与一次函数的解析式;
    (2)若一次函数交与y轴于点C,求△ACO的面积.
    17、(10分)如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.
    (1)求反比例函数的解析式;
    (2)若点P在x轴上,且的面积为5,求点P的坐标.
    18、(10分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,,点D,E,F分别是AB,AC,BC边上的中点,连结BE,DF,已知则_________.
    20、(4分)已知∠ABC=60°,点D是其角平分线上一点,BD=CD=6,DE//AB交BC于点E.若在射线BA上存在点F,使,请写出相应的BF的长:BF=_________
    21、(4分)要使式子有意义,则的取值范围是__________.
    22、(4分)若最简二次根式与是同类二次根式,则=_______.
    23、(4分)如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A的坐标是(-1,4),则点C的坐标是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)关于x的一元二次方程有两个不等实根,.
    (1)求实数k的取值范围;
    (2)若方程两实根,满足,求k的值.
    25、(10分)用适当的方法解方程:
    (1) (2)
    26、(12分)如图,在平行四边形ABCD中,点F在AD上,且AF=AB,AE平分∠BAD交BC于点E,连接EF,BF,与AE交于点O.
    (1)求证:四边形ABEF是菱形;
    (2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    小正方形运动过程中,y与x的函数关系为分段函数,即当0≤x<完全重叠前,函数为为增函数;当完全重叠时,函数为平行于x轴的线段;当不再完全重叠时,函数为为减函数.即按照自变量x分为三段.
    【详解】
    解:依题意,阴影部分的面积函数关系式是分段函数,
    面积由“增加→不变→减少”变化.
    故选C.
    本题考查了动点问题的函数图象.关键是理解图形运动过程中的几个分界点.本题也可以通过分析s随x的变化而变化的趋势及相应自变量的取值范围,而不求解析式来解决问题.
    2、A
    【解析】
    利用平行四边形的性质得出CO=AO= AC=3,DO=OB=BD=4,进而利用勾股定理的逆定理得出答案.
    【详解】
    ∵AC、BD是平行四边形ABCD的对角线,AC与BD交于点O,AC=6,BD=8,
    ∴CO=AO=AC=3,DO=OB=BD=4,
    又∵AB=5,
    ∴AB=AO+BO,
    ∴△ABO是直角三角形,
    ∴∠AOB=∠BOC=90°,
    ∴BC= =5,
    ∴△BOC的周长是:3+4+5=12.
    故选:A.
    此题考查平行四边形的性质,解题关键在于得到CO =3, OB=4.
    3、D
    【解析】
    由AAS证明≌,得出,证出,连接DM,由HL证明≌,得出,因此,设,则,,在中,由勾股定理得出方程,解方程即可.
    【详解】
    解:四边形ABCD是矩形,
    ,,,,





    在和中,,
    ≌,



    在和中,

    ≌,


    设,则,,
    在中,由勾股定理得:,
    解得:,
    .
    故选D.
    本题考查了矩形的性质、全等三角形的判定与性质、勾股定理;熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问题的关键.
    4、D
    【解析】
    根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系 ,据此即可确定答案.
    【详解】
    显然A、B、C选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选D.
    本题主要考察函数的定义,属于基础题,熟记函数的定义是解题的关键.
    5、B
    【解析】
    根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;
    【详解】
    A、不是轴对称图形,是中心对称图形,故本选项错误;
    B、是轴对称图形,不是中心对称图形,故本选项正确;
    C、不是轴对称图形,是中心对称图形,故本选项错误;
    D、是轴对称图形,也是中心对称图形,故本选项错误.
    故选B.
    6、C
    【解析】
    根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.
    【详解】
    A、极差为:83-28=55,故本选项错误;
    B、∵58出现的次数最多,是2次,
    ∴众数为:58,故本选项错误;
    C、中位数为:(58+58)÷2=58,故本选项正确;
    D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;
    故选C.
    7、C
    【解析】
    根据平行四边形的性质得到DO=OB,∠ABC=∠ADC=50°,根据三角形中位线定理得到OE∥BC,根据平行线的性质得到∠ACB=∠COE=30°,利用三角形内角和定理计算即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴DO=OB,∠ABC=∠ADC=50°,
    ∵DO=OB,DE=EC,
    ∴OE∥BC,
    ∴∠ACB=∠COE=30°,
    ∴∠BAC=180°-50°-30°=100°,
    故选:C.
    本题考查的是平行四边形的性质、三角形中位线定理,掌握平行四边形的对角线互相平分是解题的关键.
    8、C
    【解析】
    设平均每年的增长率是x,可得2017年的收入为:4000(1+x)元,则2018年年收入为:4000(1+x)2,进而得出等式求出答案
    【详解】
    解:设平均每年的增长率是x,根据题意可得:
    4000(1+x)+4000(1+x)2=1.
    故选:C.
    本题考查了一元二次方程应用中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4
    【解析】
    由平行四边形ABCD的对角线相交于点O,,根据线段垂直平分线的性质,可得AM=CM,又由平行四边形ABCD的周长为8,可得AD+CD的长,继而可得△CDE的周长等于AD+CD.
    【详解】
    ∵四边形ABCD是平行四边形
    ∴OB=OD,AB=CD,AD=BC
    ∵平行四边形ABCD的周长为8
    ∴AD+CD=4

    ∴AM=CM
    ∴△CDE的周长为:CD+CM+DM=CD+AM+DM=AD+CD=4.
    故答案为:4
    本题主要考查了平行四边形的性质,线段垂直平分线的性质。
    10、6
    【解析】
    连接BD,证明△ECA≌△DCB,继而得到∠ADB=90°,然后利用勾股定理进行求解即可.
    【详解】
    连接BD,
    ∵△ACB和△ECD都是等腰直角三角形,
    ∴CE=CD,CA=CB,∠ECD=∠ACB=90°,
    ∴∠EDC=∠E=45°,∠ECA=∠DCB,
    在△ACE和△BCD中,

    ∴△ECA≌△BDC,
    ∴DB=AE=4,∠BDC=∠E=45°,
    ∴∠ADB=∠EDC+∠BDC=90°,
    ∴AD=,
    故答案为6.
    本题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理等,正确添加辅助线,熟练运用相关知识是解题的关键.
    11、1
    【解析】
    过点G作GF⊥BC于F,交AD于E,根据角平分线的性质得到GF=GH=5,GE=GH=5,计算即可.
    【详解】
    解:过点G作GF⊥BC于F,交AD于E,
    ∵AD∥BC,GF⊥BC,
    ∴GE⊥AD,
    ∵AG是∠BAD的平分线,GE⊥AD,GH⊥AB,
    ∴GE=GH=4,
    ∵BG是∠ABC的平分线,FG⊥BC,GH⊥AB,
    ∴GF=GE=4,
    ∴EF=GF+GE=1,
    故答案为:1.
    本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    12、4
    【解析】
    先在直角三角形ABC中,求出AB,BC,然后判断出BD=AB=4,简单计算即可
    【详解】
    在Rt△ABC中,AC=4,∠B=60°,
    ∴AB=4,BC=8,
    由旋转得,AD=AB,
    ∵∠B=60°,
    ∴BD=AB=4,
    ∴CD=BC−BD=8−4=4
    故答案为:4
    此题考查含30度角的直角三角形,旋转的性质,解题关键在于求出AB,BC
    13、1
    【解析】
    先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.
    【详解】
    ∵在△ABC中,∠B=90°,AB=3,AC=5,
    ∵△ADE是△CDE翻折而成,
    ∴AE=CE,
    ∴AE+BE=BC=4,
    ∴△ABE的周长=AB+BC=3+4=1.
    故答案为:1.
    本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.
    【解析】
    (1)根据函数图象中的数据可以求得OA段对应的函数解析式;
    (2)根据函数图象中的数据可以求得AC段对应的函数解析式,然后将x=15代入,求得相应的y值,即可得到点C的坐标;
    (3)根据(2)点C的坐标和图象中的数据可以求得高铁在CD时段共行驶了多少千米.
    【详解】
    (1)当时,
    设关于的函数表达式是,
    ,得,
    即当,关于的函数表达式是.
    (2)设段对应的函数解析式为,

    即段对应的函数表达式为.
    当时,,
    即点的坐标为.
    (3)(千米),
    答:高铁在时段共行驶了千米.
    考查了一次函数的应用,正确读取图象的信息并用待定系数求解析式是解题的关键.
    15、 (1);(2)
    【解析】
    (1)首先将代数式进行通分,然后根据已知式子,即可得解;
    (2)首先根据完全平方差公式,将代数式展开,然后将已知式子转换形式,代入即可得解.
    【详解】
    ∵,,
    ∴,
    (1)
    (2)
    此题主要考查二次根式的运算,熟练掌握,即可解题.
    16、(1)y=﹣2x+1;(2)2.
    【解析】
    (1)先设正比例函数解析式为y=mx,再把(1,4)点代入可得m的值,进而得到解析式;设一次函数解析式为y=kx+b,把(1,4)(2,0)代入可得关于k、b的方程组,然后再解出k、b的值,进而得到解析式;
    (2)利用一次函数解析式,求得OC的长,进而得出△ACO的面积.
    【详解】
    解:(1)设正比例函数解析式为y=mx,
    ∵图象经过点A(1,4),
    ∴4=m×1,即m=4,
    ∴正比例函数解析式为y=4x;
    设一次函数解析式为y=kx+b,
    ∵图象经过(1,4)(2,0),
    ∴,
    解得:,
    ∴一次函数解析式为y=﹣2x+1.
    (2)在y=﹣2x+1中,令x=0,则y=1,
    ∴C(0,1),
    ∴OC=1,
    ∴S△AOC=×1×1=2.
    此题主要考查了待定系数法求一次函数解析式以及三角形的面积,关键是用联立解析式的方法求出交点坐标.
    17、(1) (2)P的坐标为或
    【解析】
    (1)利用点A在上求a,进而代入反比例函数求k即可;
    (2)设,求得C点的坐标,则,然后根据三角形面积公式列出方程,解方程即可.
    【详解】
    (1)把点代入,得,

    把代入反比例函数,
    ∴;
    ∴反比例函数的表达式为;
    (2)∵一次函数的图象与x轴交于点C,
    ∴,
    设,
    ∴,
    ∴,
    ∴或,
    ∴P的坐标为或.
    本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.
    18、﹣,﹣.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后在-2< x<中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.
    【详解】
    原式====,∵-2< x<(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-.
    本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    已知BE是Rt△ABC斜边AC的中线,那么BE=AC;EF是△ABC的中位线,则DF=AC,则DF=BE=1.
    【详解】
    解:,E为AC的中点,

    分别为AB,BC的中点,

    故答案为:1.
    此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.
    20、2或4.
    【解析】
    过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.
    【详解】
    如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
    所以BE=DF1,且BE、DF1上的高相等,
    此时S△DCF1=S△BDE;
    过点D作DF2⊥BD,
    ∵∠ABC=60°,F1D∥BE,
    ∴∠F2F1D=∠ABC=60°,
    ∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,
    ∴∠F1DF2=∠ABC=60°,
    ∴△DF1F2是等边三角形,
    ∴DF1=DF2,
    ∵BD=CD,∠ABC=60°,点D是角平分线上一点,
    ∴∠DBC=∠DCB=×60°=30°,
    ∴∠CDF1=180°-∠BCD=180°-30°=150°,
    ∠CDF2=360°-150°-60°=150°,
    ∴∠CDF1=∠CDF2,
    ∵在△CDF1和△CDF2中,

    ∴△CDF1≌△CDF2(SAS),
    ∴点F2也是所求的点,
    ∵∠ABC=60°,点D是角平分线上一点,DE∥AB,
    ∴∠DBC=∠BDE=∠ABD=×60°=30°,
    又∵BD=6,
    ∴BE=×6÷cs30°=3÷=2,
    ∴BF1=BF2=BF1+F1F2=2+2=4,
    故BF的长为2或4.
    故答案为:2或4.
    本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.
    21、
    【解析】
    根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.
    【详解】
    由题意得:
    2-x≥0,
    解得:x≤2,
    故答案为x≤2.
    22、4
    【解析】
    根据同类二次根式的定义,被开方数相等,由此可得出关于x的方程,进而可求出x的值.
    【详解】
    解:由题意可得:

    解:
    当时,与都是最简二次根式
    故答案为:4.
    本题考查了同类二次根式与最简二次根式的定义,掌握定义是解题的关键.
    23、 (3,0)
    【解析】
    试题分析:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
    【详解】
    根据点A的坐标即可确定正方形的边长,从而求得点C的坐标.
    ∵正方形ABCD,点A的坐标是(-1,4)
    ∴点C的坐标是(3,0).
    考点:坐标与图形性质.
    二、解答题(本大题共3个小题,共30分)
    24、 (1) k<;(2) k=1.
    【解析】
    (1)根据一元二次方程的根的判别式得出△>1,求出不等式的解集即可;
    (2)根据根与系数的关系得出x1+x2=-(2k-1)=1-2k,x1•x2=k2,代入x1+x2+x1x2-1=1,即可求出k值.
    【详解】
    解:(1)∵关于x的一元二次方程x2+(2k-1)x+k2=1有两个不等实根x1,x2,
    ∴△=(2k-1)2-4×1×k2=-4k+1>1,
    解得:k<,
    即实数k的取值范围是k<;
    (2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1•x2=k2,
    ∵x1+x2+x1x2-1=1,
    ∴1-2k+k2-1=1,
    ∴k2-2k=1
    ∴k=1或2,
    ∵由(1)知当k=2方程没有实数根,
    ∴k=2不合题意,舍去,
    ∴k=1.
    本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.
    25、(1) (2)
    【解析】
    (1)利用公式法,先算出根的判别式,再根据公式解得两根即可;
    (2)利用因式分解法将等号左边进行因式分解,即可解出方程.
    【详解】
    解:(1)由题可得:,
    所以,
    所以
    整理可得,;
    (2)
    提公因式可得:
    化简得:
    解得:,;
    故答案为:(1),(2),.
    本题考查一元二次方程的解法,在解方程时要先观察方程是否可以用因式分解法去解,如果可以的话优先考虑因式分解法,如果不可以的话可以利用公式法,利用公式法时注意先算根的判别式,并且注意符号问题.
    26、(1)见解析;(2)AE=10,四边形ABEF的面积=50.
    【解析】
    (1)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由AF=AB得出BE=AF,即可得出结论.
    (2)根据菱形的性质可得AB=10,AE⊥BF,BO=FB=5,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.菱形的面积=对角线乘积的一半.
    【详解】
    (1)证明∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠DAE=∠AEB,
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∴∠BAE=∠AEB,
    ∴BE=AB,且AF=AB,
    ∴BE=AF,
    又∵BE∥AF,
    ∴四边形ABEF是平行四边形,
    ∵AF=AB,
    ∴四边形ABEF是菱形;
    (2)∵四边形ABEF为菱形,且周长为40,BF=10
    ∴AB=BE=EF=AF=10,AE⊥BF,BO=FB=5,AE=2AO,
    在Rt△AOB中,AO=,
    ∴AE=2AO=10.
    ∴四边形ABEF的面积=BF•AE=×10×10=50
    本题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.
    题号





    总分
    得分
    批阅人

    相关试卷

    江苏省溧水区2024-2025学年九年级数学第一学期开学综合测试试题【含答案】:

    这是一份江苏省溧水区2024-2025学年九年级数学第一学期开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省昌乐县九上数学开学综合测试试题【含答案】:

    这是一份2025届山东省昌乐县九上数学开学综合测试试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕师大附中九年级数学第一学期开学综合测试试题【含答案】:

    这是一份2024-2025学年陕师大附中九年级数学第一学期开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map