终身会员
搜索
    上传资料 赚现金

    山东省成武县2024年数学九上开学质量跟踪监视试题【含答案】

    立即下载
    加入资料篮
    山东省成武县2024年数学九上开学质量跟踪监视试题【含答案】第1页
    山东省成武县2024年数学九上开学质量跟踪监视试题【含答案】第2页
    山东省成武县2024年数学九上开学质量跟踪监视试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省成武县2024年数学九上开学质量跟踪监视试题【含答案】

    展开

    这是一份山东省成武县2024年数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一组数据 1,2,3,4,5 的方差与下列哪组数据的方差相同的是( )
    A.2,4,6,8,10 B.10,20,30,40,50
    C.11,12,13,14,15 D.11,22,33,44,55
    2、(4分)一直角三角形两边分别为5和12,则第三边为( )
    A.13B.C.13或D.7
    3、(4分)A、B两点在一次函数图象上的位置如图所示,两点的坐标分别是,,下列结论正确的是
    A.B.C.D.
    4、(4分)方差是表示一组数据的
    A.变化范围B.平均水平C.数据个数D.波动大小
    5、(4分)如图,函数和的图像交于点,则根据图像可得不等式的解集是( )
    A.B.C.D.
    6、(4分)下列四个命题:①小于平角的角是钝角;②平角是一条直线;③等角的余角相等;④凡直角都相等.其中真命题的个数的是( )
    A.个B.个C.个D.个
    7、(4分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AB∥CD,添加下列条件不能使四边形ABCD成为平行四边形的是( )
    A.AB=CDB.OB=OD
    C.∠BCD+∠ADC=180°D.AD=BC
    8、(4分)已知二次函数(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为( )
    A.或1B.或1C.或D.或
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,矩形ABCD中,,,CB在数轴上,点C表示的数是,若以点C为圆心,对角线CA的长为半径作弧交数轴的正半轴于点P,则点P表示的数是______.
    10、(4分)分解因式: .
    11、(4分)马拉松赛选手分甲、乙两组运动员进行了艰苦的训练,他们在相同条件下各10次比赛,成绩的平均数相同,方差分别为0.25,0.21,则成绩较为稳定的是_________(选填“甲”或“乙)
    12、(4分)某射手在相同条件下进行射击训练,结果如下:
    该射手击中靶心的概率的估计值是______(精确到0.01).
    13、(4分)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=____度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)骑自行车旅行越来越受到人们的喜爱,顺风车行经营的型车2017年7月份销售额为万元,今年经过改造升级后,型车每辆的销售价比去年增加元,若今年7月份与去年7月份卖出的型车数量相同,则今年7月份型车销售总额将比去年7月份销售总额增加.求今年7月份顺风车行型车每辆的销售价格.
    15、(8分)如图,直线y=kx+b经过点A(-5,0),B(-1,4)
    (1)求直线AB的表达式;
    (2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;
    (3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.
    16、(8分)如图,矩形OABC在平面直角坐标系中的位置如图所示,点B(﹣3,5),点D在线段AO上,且AD=2OD,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.
    17、(10分)朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级、班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩满分为100分如图所示.
    根据图示填写表格;
    结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
    如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.
    18、(10分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.
    (1)求EG:BG的值;
    (2)求证:AG=OG;
    (3)设AG=a,GH=b,HO=c,求a:b:c的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)请写出“三个角都相等的三角形是等边三角形”的逆命题:_____.
    20、(4分)若分式 的值为零,则 _____.
    21、(4分)如图,点A在反比例函数的图像上,AB⊥x轴,垂足为B,且,则_____ .
    22、(4分)某县为了节约用水,自建了一座污水净化站,今年一月份净化污水3万吨,三月份增加到3.63万吨,则这两个月净化的污水量每月平均增长的百分率为______.
    23、(4分)函数 yl=" x" ( x ≥0 ) ,( x > 0 )的图象如图所示,则结论:①两函数图象的交点A的坐标为(3 ,3 ) ②当 x > 3时,③当 x =1时, BC = 8
    ④当 x 逐渐增大时, yl随着 x 的增大而增大,y2随着 x 的增大而减小.其中正确结论的序号是_ .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在中,,、分别是、的中点,延长到,使得,连接、.
    (1)求证:四边形为平行四边形;
    (2)若四边形的周长是32,,求的面积;
    (3)在(2)的条件下,求点到直线的距离.
    25、(10分)周末,小明、小刚两人同时各自从家沿直线匀速步行到科技馆参加科技创新活动,小明家、小刚家、科技馆在一条直线上.已知小明到达科技馆花了20分钟.设两人出发(分钟)后,小明离小刚家的距离为(米),与的函数关系如图所示.
    (1)小明的速度为 米/分, ,小明家离科技馆的距离为 米;
    (2)已知小刚的步行速度是40米/分,设小刚步行时与家的距离为(米),请求出与之间的函数关系式,并在图中画出 (米)与 (分钟)之间的函数关系图象;
    (3)小刚出发几分钟后两人在途中相遇?
    26、(12分)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.
    (1)应用:已知y=2x+1与y=kx﹣1垂直,求k;
    (2)直线经过A(2,3),且与y=x+3垂直,求解析式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据方差的性质即可解答本题.
    【详解】
    C选项中数据是在数据 1,2,3,4,5上都加10,故方差保持不变.
    故选:C.
    本题考查了方差,一般一组数据加上(减去)相同的数后,方差不变.
    2、C
    【解析】
    此题要考虑两种情况:当所求的边是斜边时;当所求的边是直角边时.
    【详解】
    由题意得:当所求的边是斜边时,则有=1;
    当所求的边是直角边时,则有=.
    故选:C.
    本题考查了勾股定理的运用,难度不大,但要注意此类题的两种情况,很多学生只选1.
    3、B
    【解析】
    根据函数的图象可知:y随x的增大而增大,y+b【详解】
    ∵根据函数的图象可知:y随x的增大而增大,
    ∴y+b∴b<0,a<0,
    ∴选项A. C. D都不对,只有选项B正确,
    故选B.
    4、D
    【解析】
    根据方差的意义进行求解即可得.
    【详解】
    方差是用来表示一组数据波动大小的量,
    故选D.
    本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,通常用s2表示,其公式为S2=[(x1-)2+(x2-)2+…+(xn-)2](其中n是样本容量,表示平均数).方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    5、C
    【解析】
    根据一次函数的图象和两函数的交点坐标即可得出答案
    【详解】
    解:从图象得到,当x>-2时,的图象在函数y=ax-3的图象上
    ∴不等式3x+b>ax-3的解集是x>-2,
    故选:C
    此题考查一次函数和一元一次不等式的应用,解题关键在于看懂函数图象
    6、B
    【解析】
    根据平角、余角和直角的概念进行判断,即可得出答案.
    【详解】
    (1)钝角应大于90°而小于180°,故此选项错误;(2)角和直线是两个不同的概念,故此选项错误;(3)根据余角的概念可知:等角的余角相等,故此选项正确;(4)直角都等于90°,故此选项正确.因此答案选择B.
    本题主要考查了角的有关概念,等角的余角相等的性质.特别注意角和直角是两个不同的概念,不要混为一谈.
    7、D
    【解析】
    已知AB∥CD,可根据有一组边平行且相等的四边形是平行四边形来判定,也可根据两组对边分别平行的四边形是平行四边形来判定.
    【详解】
    ∵在四边形ABCD中,AB∥CD,
    ∴可添加的条件是:AB=CD,
    ∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),故选项A不符合题意;
    ∵AB∥CD,
    ∴∠ABD=∠CDB,
    在△AOB和△COD中,
    ∴△AOB≌△COD(ASA),
    ∴AB=CD,
    ∴四边形ABCD为平行四边形,故选项B不符合题意;
    ∵∠BCD+∠ADC=180°,
    ∴AD∥BC,
    ∵AB∥CD,
    ∴四边形ABCD是平行四边形,故选项C不符合题意;
    ∵AB∥CD,AD=BC无法得出四边形ABCD是平行四边形,故选项D符合题意.
    故选:D.
    本题考查了平行四边形的定义、平行四边形的判定定理;熟练掌握平行四边形的判定方法是解决问题的关键.
    8、A
    【解析】
    首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.
    【详解】
    依题意知a>0,>0,a+b﹣2=0,
    故b>0,且b=2﹣a,
    a﹣b=a﹣(2﹣a)=2a﹣2,
    于是0<a<2,
    ∴﹣2<2a﹣2<2,
    又a﹣b为整数,
    ∴2a﹣2=﹣1,0,1,
    故a=,1,,
    b=,1,,
    ∴ab=或1,故选A.
    根据开口和对称轴可以得到b的范围.按照左同右异规则.当对称轴在y轴的左侧,则a,b符号相同,在右侧则a,b符号相反.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    利用勾股定理求AC,再求出PO,从而求出P所表示的数.
    【详解】
    解:由勾股定理可得:AC=,
    因为,PC=AC,
    所以,PO=,
    所以,点P表示的数是.
    故答案为
    本题考核知识点:在数轴上表示无理数. 解题关键点:利用勾股定理求出线段长度.
    10、.
    【解析】
    先把式子写成x2-22,符合平方差公式的特点,再利用平方差公式分解因式.
    【详解】
    x2-4=x2-22=(x+2)(x-2).
    故答案为.
    此题考查的是利用公式法因式分解,因式分解的步骤为:一提公因式;二看公式.
    11、乙
    【解析】
    根据方差的意义判断即可.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    ∵甲乙的方差分别为1.25,1.21
    ∴成绩比较稳定的是乙
    故答案为:乙
    运用了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    12、0.1.
    【解析】
    根据表格中实验的频率,然后根据频率即可估计概率.
    【详解】
    解:由击中靶心频率都在0.1上下波动,
    ∴该射手击中靶心的概率的估计值是0.1.
    故答案为:0.1.
    本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.
    13、1
    【解析】
    首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.
    【详解】
    解:∵正五边形的外角为10°÷5=72°,
    ∴∠C=180°﹣72°=108°,
    ∵CD=CB,
    ∴∠CDB=1°,
    ∵AF∥CD,
    ∴∠DFA=∠CDB=1°,
    故答案为1.
    本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.
    三、解答题(本大题共5个小题,共48分)
    14、2000
    【解析】
    设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.
    【详解】
    解:设去年A型车每辆x元,那么今年每辆(x+400)元,
    根据题意得
    解得x=1600,
    经检验,x=1600是方程的解.
    答:今年A型车每辆2000元.
    本题考查了分式方程的应用,解题的关键是设未知数列出方程解决问题,注意分式方程必须检验.
    15、(1)y=x+5;(2);(1)x>-1.
    【解析】
    (1)利用待定系数法求一次函数解析式即可;
    (2)联立两直线解析式,解方程组可得到两直线交点C的坐标,即可求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;
    (1)根据图形,找出点C右边的部分的x的取值范围即可.
    【详解】
    解:(1)∵直线y=kx+b经过点A(-5,0),B(-1,4),
    ,解得,
    ∴直线AB的表达式为:y=x+5;
    (2)∵若直线y= -2x-4与直线AB相交于点C,
    ∴,解得,故点C(-1,2).
    ∵y= -2x-4与y=x+5分别交y轴于点E和点D,∴D(0,5),E(0,-4),
    直线CE:y= -2x-4与直线AB及y轴围成图形的面积为:DE•|Cx|=×9×1=;
    (1)根据图象可得x>-1.
    故答案为:(1)y=x+5;(2);(1)x>-1.
    本题考查待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,解题的关键是从函数图象中获得正确信息.
    16、(﹣3,2)
    【解析】
    先作点D关于直线AB的对称点D′,连接CD′交AB于点E′.根据矩形的性质及题意得到直线CD′的解析式,即可得到答案.
    【详解】
    如图,作点D关于直线AB的对称点D′,连接CD′交AB于点E′.此时△DCE′的周长最小.
    ∵四边形AOCB是矩形, B(﹣3,5),
    ∴OA=3,OC=5,
    ∵AD=2OD,
    ∴AD=2,OD=1,
    ∴AD′=AD=2,
    ∴D′(﹣5,0),∵C(0,5),
    ∴直线CD′的解析式为y=x+5,
    ∴E′(﹣3,2).
    本题考查矩形的性质和求一元一次方程,解题的关键是掌握矩形的性质和求一元一次方程.
    17、(1)详见解析;(2)九班成绩好些;(3)九班的成绩更稳定,能胜出.
    【解析】
    由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;
    由平均数相等得前提下,中位数高的成绩好解答可得;
    分别计算两班成绩的方差,由方差小的成绩稳定解答.
    【详解】
    解:九班5位同学的成绩为:75、80、85、85、100,
    其中位数为85分;
    九班5位同学的成绩为:70、100、100、75、80,
    九班的平均数为分,其众数为100分,
    补全表格如下:
    九班成绩好些,
    两个班的平均数都相同,而九班的中位数高,
    在平均数相同的情况下,中位数高的九班成绩好些.
    九班的成绩更稳定,能胜出.
    分,
    分,

    九班的成绩更稳定,能胜出.
    本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    18、(1)1:3;(1)见解析;(3)5:3:1.
    【解析】
    (1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;
    (1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;
    (3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴AO=AC,AD=BC,AD∥BC,
    ∴△AEG∽△CBG,
    ∴.
    ∵AE=EF=FD,
    ∴BC=AD=3AE,
    ∴GC=3AG,GB=3EG,
    ∴EG:BG=1:3;
    (1)∵GC=3AG(已证),
    ∴AC=4AG,
    ∴AO=AC=1AG,
    ∴GO=AO﹣AG=AG;
    (3)∵AE=EF=FD,
    ∴BC=AD=3AE,AF=1AE.
    ∵AD∥BC,
    ∴△AFH∽△CBH,
    ∴,
    ∴=,即AH=AC.
    ∵AC=4AG,
    ∴a=AG=AC,
    b=AH﹣AG=AC﹣AC=AC,
    c=AO﹣AH=AC﹣AC=AC,
    ∴a:b:c=::=5:3:1.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、等边三角形的三个角都相等.
    【解析】
    把原命题“三个角都相等的三角形是等边三角形”的题设与结论进行交换即可.
    【详解】
    “三个角都相等的三角形是等边三角形”的逆命题为
    “等边三角形的三个角都相等”,
    故答案为:等边三角形的三个角都相等.
    本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
    20、-1
    【解析】
    直接利用分式的值为 0,则分子为 0,分母不为 0,进而得出答案.
    【详解】
    解:∵分式的值为零,

    解得:.
    故答案为:﹣1.
    本题考查分式的值为零的条件,正确把握定义是解题的关键.
    21、1
    【解析】
    由=4,根据反比例函数的比例系数的几何意义得到,然后去绝对值即可得到满足条件的的值.
    【详解】
    ∵=4,
    ∴,
    ∵点A在第一象限,
    ∴,
    ∴.故答案为:1.
    本题综合考查了反比例函数系数的几何意义,理解反比例函数的系数的几何意义和图象所在的象限是解决问题的关键.
    22、10%
    【解析】
    本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两个月净化的污水量平均每月增长的百分率为x,那么由题意可得出方程为3(1+x)2=3.63解方程即可求解.
    【详解】
    解:设这两个月净化的污水量平均每月增长的百分率为x,由题意得3(1+x)2=3.63
    解得x=0.1或-2.1(不合题意,舍去)
    所以这两个月净化的污水量平均每月增长的百分率为10%.
    本题主要考查了增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.
    23、①③④
    【解析】
    逐项分析求解后利用排除法求解.①可列方程组求出交点A的坐标加以论证.②由图象分析论证.③根据已知先确定B、C点的坐标再求出BC.④由已知和函数图象分析.
    解:①根据题意列解方程组,
    解得,;
    ∴这两个函数在第一象限内的交点A的坐标为(3,3),正确;
    ②当x>3时,y1在y2的上方,故y1>y2,错误;
    ③当x=1时,y1=1,y2==9,即点C的坐标为(1,1),点B的坐标为(1,9),所以BC=9-1=8,正确;
    ④由于y1=x(x≥0)的图象自左向右呈上升趋势,故y1随x的增大而增大,
    y2=(x>0)的图象自左向右呈下降趋势,故y2随x的增大而减小,正确.
    因此①③④正确,②错误.
    故答案为①③④.
    本题考查了一次函数和反比例函数图象的性质.解决此类问题的关键是由已知和函数图象求出正确答案加以论证.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)96;(3)4.8
    【解析】
    (1)根据三角形的中位线与平行四边形的判定即可求解;
    (2)根据平行四边形的性质与勾股定理的应用即可求解;
    (3)过作,过作交延长线于,根据直角三角形的面积公式即可求解.
    【详解】
    (1)证明∵,分别是,中点
    ∴,
    ∴,
    ∴,
    ∴四边形为平行四边形
    (2)∵

    ∵,为中点



    设,

    化简得:
    解得:
    ∴,

    (3)过作,过作交延长线于,
    由(1):

    在直角三角形中,,,

    此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.
    25、(1)60;960;1200;(2)=40(0≤≤24);见解析;(3)12分钟.
    【解析】
    (1)根据图象可求得小明的速度v1,便可得出a的值以及小明家离科技馆的距离;
    (2)根据小刚步行时的速度和小刚家离科技馆的距离,可求出解析式并画出图象;
    (3)两人离科技馆的距离相等时相遇,列出方程可求出答案.
    【详解】
    解:(1)根据图象可知小明4分钟走过的路程为240m,
    列出解析式:s1=v1x,
    代入可得240=4v1,
    解得v1=60米/分钟,
    即小明速度是60米/分钟,
    根据图象可知小明又走了16分钟到达科技馆,
    可得a=16v1,
    代入v1,可得a=960m,
    据题意小明到科技馆共用20分钟,
    可得出小明家离科技馆的距离s2=v1x2,
    解得:s2=60×20=1200m,
    故小明家离科技馆的距离为1200m;
    故答案为:60;960;1200
    (2)列出解析式:y1=40x,
    由(1)可知小刚离科技馆的距离为a=960m,
    代入可得960=40x,
    解得:x=24分钟,
    作出图象如下:
    (3)两人离科技馆的距离相等时相遇,
    当x≥4时,小明所走路程y与x的函数关系式为y=60x-240,
    则60x-240=40x,
    解得:x=12,
    即小刚出发12分钟后两人相遇.
    本题考查了一次函数的应用,有一定难度,解答本题的关键是仔细审题,同学们注意培养自己的读图能力.
    26、(1)k=;(2)解析式为y=2x﹣2.
    【解析】
    试题分析: (1)根据L1⊥L2,则k1·k2=﹣1,可得出k的值即可;
    (2)根据直线互相垂直,则k1·k2=﹣1,可得出过点A直线的k等于2,得出所求的解析式即可.
    试题解析:
    解:(1)∵L1⊥L2,则k1•k2=﹣1,
    ∴2k=﹣1,
    ∴k=﹣;
    (2)∵过点A直线与y=x+2垂直,
    ∴设过点A直线的直线解析式为y=2x+b,
    把A(2,2)代入得,b=﹣2,
    ∴解析式为y=2x﹣2.
    题号





    总分
    得分
    平均数
    中位数
    众数
    九班
    85
    85
    九班
    80
    平均数
    中位数
    众数
    九班
    85
    85
    85
    九班
    85
    80
    100

    相关试卷

    山东省滨州市集团学校2024年九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份山东省滨州市集团学校2024年九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省诸城市数学九上开学质量跟踪监视试题【含答案】:

    这是一份2025届山东省诸城市数学九上开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】:

    这是一份2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map