山东省德州市平原县2024年数学九年级第一学期开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在一个不透明的盒子里装有2个红球和1个黄球,每个球除颜色外都相同,从中任意摸出2个球。下列事件中,不可能事件是( )
A.摸出的2个球都是红球
B.摸出的2个球都是黄球
C.摸出的2个球中有一个是红球
D.摸出的2个球中有一个是黄球
2、(4分)如图,点是矩形两条对角线的交点,E是边上的点,沿折叠后,点恰好与点重合.若,则折痕的长为 ( )
A.B.C.D.6
3、(4分)如图,AD、BE分别是的中线和角平分线,,,F为CE的中点,连接DF,则AF的长等于( )
A.2B.3C.D.
4、(4分)某班名男生参加中考体育模拟测试,跑步项目成绩如下表:
则该班男生成绩的中位数是( )
A.B.C.D.
5、(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a<0;②a-b+c<0;③b2-4ac>0;④2a+b>0,其中正确的是( )
A.①②③④B.②③④C.①②③D.①②④
6、(4分)一次函数的图象不经过哪个象限( )
A.第一象限B.第二象限C.第三象限D.第四象限
7、(4分)下列二次拫式中,最简二次根式是( )
A.B.C.D.
8、(4分)甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s=5,s=12,则甲、乙两个同学的数学成绩比较稳定的是( ).
A.甲B.乙C.甲和乙一样D.无法确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于x的一元一次不等式组中两个不等式的解集在同一数轴上的表示如图所示,则m的值是_______.
10、(4分)已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.
11、(4分)函数 yl=" x" ( x ≥0 ) ,( x > 0 )的图象如图所示,则结论:①两函数图象的交点A的坐标为(3 ,3 ) ②当 x > 3时,③当 x =1时, BC = 8
④当 x 逐渐增大时, yl随着 x 的增大而增大,y2随着 x 的增大而减小.其中正确结论的序号是_ .
12、(4分)已知x=, ,则x2+2xy+y2的值为_____.
13、(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解下列各题:
(1)分解因式:9a2(x﹣y)+4b2(y﹣x);
(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.
15、(8分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.
16、(8分)在平面直角坐标系中,正比例函数与反比例函数为的图象交于两点
若点,求的值;
在的条件下,x轴上有一点,满足的面积为,水点坐标;
若,当时,对于满足条件的一切总有,求的取值范围.
17、(10分)如图1,以直线MN上的线段BC为边作正方形ABCD,CH平分∠DCN,点E为射线BN上一点,连接AE,过点E作AE的垂线交射线CH于点F,探索AE与EF的数量关系。
(1)阅读下面的解答过程。并按此思路完成余下的证明过程
当点E在线段BC上,且点E为BC中点时,AB=EF
理由如下:
取AB中点P,達接PE
在正方形ABCD中,∠B=∠BCD=90°,AB=BC
∴△BPE等腰三角形,AP=BC
∴∠BPB=45°
∴∠APBE=135°
又因为CH平分∠DCN
∴∠DCF=45°
∴∠ECF=135°
∴∠APE=∠ECF
余下正明过程是:
(2)当点E为线段AB上任意一点时,如图2,结论“AE=EF”是否成立,如果成立,请给出证明过程;
(3)当点E在BC的延长线时,如图3,结论“AE=EF”是否仍然成立,如果成立,请在图3中画出必要的辅助线(不必说明理由)。
18、(10分)(1)如图1,方格纸中的每个小方格都是边长为1个单位的正方形,的顶点以及点均在格点上.
①直接写出的长为______;
②画出以为边,为对角线交点的平行四边形.
(2)如图2,画出一个以为对角线,面积为6的矩形,且和均在格点上(、、、按顺时针方向排列).
(3)如图3,正方形中,为上一点,在线段上找一点,使得.(要求用无刻度的直尺画图,不准用圆规,不写作法,保留画图痕迹)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.
20、(4分)将矩形按如图所示的方式折叠,得到菱形,若,则菱形的周长为______.
21、(4分)如图,直线AB与反比例函数的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,则v的取值范围是__________.
22、(4分)如图,已知直线:与直线:相交于点,直线、分别交轴于、两点,矩形的顶点、分别在、上,顶点、都在轴上,且点与点重合,那么 __________________.
23、(4分)如图,AB=AC,则数轴上点C所表示的数为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE、DF.
(1)试判定四边形AEDF的形状,并证明你的结论.
(2)若DE=13,EF=10,求AD的长.
(3)△ABC满足什么条件时,四边形AEDF是正方形?
25、(10分)小丽学完统计知识后,随机调查了她所在辖区若干名居民的年龄,并绘制成如下统计图.
请根据统计图提供的信息,解答下列问题
(1)小丽共调查了 名居民的年龄,扇形统计图中a= %,b= %;
(2)补全条形统计图;
(3)若该辖区0~14岁的居民约有3500人,请估计年龄在60岁以上的居民人数.
26、(12分)某学校八年级七班学生要去实验基地进行实践活动,估计乘车人数为10人到40人之间,现在欲租甲、乙两家旅行社的车辆,已知甲、乙两家旅行社的服务质量相同,且报价都是每人120元,经过协商,甲旅行社表示可给予每位学生七五折优惠;乙旅行社表示可先免去一位同学的车费,然后给予其他同学八折优惠.
(1)若用x表示乘车人数,请用x表示选择甲、乙旅行社的费用y甲与y乙;
(2)请你帮助学校选择哪一家旅行社费用合算?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
直接利用小球个数进而得出不可能事件.
【详解】
解:在一个不透明的盒子里装有2个红球和1个黄球,每个球外颜色都相同,从中任意摸出两个球,下列事件中,不可能事件是摸出的2个黄球.
故选:B.
此题主要考查了随机事件,正确把握随机事件、不可能事件的定义是解题关键.
2、A
【解析】
由矩形的性质可得OA=OC,根据折叠的性质可得OC=BC,∠COE=∠B=90°,即可得出BC=AC,OE是AC的垂直平分线,可得∠BAC=30°,根据垂直平分线的性质可得CE=AE,根据等腰三角形的性质可得∠OCE=∠BAC=30°,在Rt△OCE中利用含30°角的直角三角形的性质即可求出CE的长.
【详解】
∵点O是矩形ABCD两条对角线的交点,
∴OA=OC,
∵沿CE折叠后,点B恰好与点O重合.BC=3,
∴OC=BC=3,∠COE=∠B=90°,
∴AC=2BC=6,OE是AC的垂直平分线,
∴AE=CE,
∵∠B=90°,BC=AC,
∴∠BAC=30°,
∴∠OCE=∠BAC=30°,
∴OC=CE,
∴CE=2.
故选A.
本题考查折叠的性质、矩形的性质及含30°角的直角三角形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;矩形的对角线相等且互相平分;30°角所对的直角边等于斜边的一半.熟练掌握相关性质是解题关键.
3、D
【解析】
已知AD是的中线,F为CE的中点,可得DF为△CBE的中位线,根据三角形的中位线定理可得DF∥BE,DF=BE=2;又因,可得∠BOD=90°,由平行线的性质可得∠ADF=∠BOD=90°,在Rt△ADF中,根据勾股定理即可求得AF的长.
【详解】
∵AD是的中线,F为CE的中点,
∴DF为△CBE的中位线,
∴DF∥BE,DF=BE=2;
∵,
∴∠BOD=90°,
∵DF∥BE,
∴∠ADF=∠BOD=90°,
在Rt△ADF中,AD=4,DF=2,
∴AF=.
故选D.
本题考查了三角形的中位线定理及勾股定理,利用三角形的中位线定理求得DF∥BE,DF=BE=2是解决问题的关键.
4、C
【解析】
将一组数据按照大小顺序排列,位于最中间的那个数或两个数的平均数就是该组数据的中位数,据此结合题意进一步加以计算即可.
【详解】
∵该班男生一共有18名,
∴中位数为按照大小顺序排序后第9与第10名的成绩的平均数,
∴该班男生成绩的中位数为:,
故选:C.
本题主要考查了中位数的定义,熟练掌握相关概念是解题关键.
5、C
【解析】
分析:根据抛物线开口方向得a<0,可对①进行判断;把x=-1代入y=ax2+bx+c,可对②进行判断;根据抛物线与x轴的交点可对③进行判断,根据抛物线的对称轴小于1,可对④进行判断.
详解:抛物线开口向下:a<0,
故①正确;
当x=-1时,
y=a-b+c<0, 故②正确;
抛物线与x轴有两个交点,
∴b2-4ac >0,
故③正确, 由图象知<1,则2a+b<0,故④错误.故选C.
点睛:本题考查了二次函数图象与系数的关系,二次函数y=ax²+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.
6、A
【解析】
根据一次函数的性质一次项系数小于0,则函数一定经过二,四象限,常数项-1<0,则一定与y轴负半轴相交,据此即可判断.
【详解】
解:∵k=-1<0,b=-1<0
∴一次函数的图象经过二、三、四象限
一定不经过第一象限.
故选:A.
本题主要考查了一次函数的性质,对性质的理解一定要结合图象记忆.
7、A
【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;
B、被开方数含能开得尽方的因数或因式,故B不符合题意;
C、被开方数含分母,故C不符合题意;
D、被开方数含能开得尽方的因数或因式,故D不符合题意;
故选:A.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
8、A
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,
∴S甲2<S乙2,
∴成绩比较稳定的是甲;
故选A.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m=1
【解析】
解不等式,表达出解集,根据数轴得出即可.
【详解】
解:不等式,
解不等式①得:
解不等式②得:,
由数轴可知,,解得m=1,
故答案为:m=1.
本题考查了根据不等式的解集求不等式中的参数问题,解题的关键是正确解出不等式组,根据解集表达出含参数的方程.
10、
【解析】
由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.
【详解】
∵1160°÷180°=6…80°,
又∵100°+80°=180°,
∴这个内角度数为100°,
故答案为:100°.
本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.
11、①③④
【解析】
逐项分析求解后利用排除法求解.①可列方程组求出交点A的坐标加以论证.②由图象分析论证.③根据已知先确定B、C点的坐标再求出BC.④由已知和函数图象分析.
解:①根据题意列解方程组,
解得,;
∴这两个函数在第一象限内的交点A的坐标为(3,3),正确;
②当x>3时,y1在y2的上方,故y1>y2,错误;
③当x=1时,y1=1,y2==9,即点C的坐标为(1,1),点B的坐标为(1,9),所以BC=9-1=8,正确;
④由于y1=x(x≥0)的图象自左向右呈上升趋势,故y1随x的增大而增大,
y2=(x>0)的图象自左向右呈下降趋势,故y2随x的增大而减小,正确.
因此①③④正确,②错误.
故答案为①③④.
本题考查了一次函数和反比例函数图象的性质.解决此类问题的关键是由已知和函数图象求出正确答案加以论证.
12、1
【解析】
先把x2+2xy+y2进行变形,得到(x+y)2,再把x,y的值代入即可求出答案.
【详解】
∵x=,,
∴x2+2xy+y2=(x+y)2=(+1+﹣1)2=(2)2=1;
故答案为:1.
此题考查了二次根式的化简求值,用到的知识点是完全平方公式,二次根式的运算,关键是对要求的式子进行变形.
13、丁;
【解析】
试题解析:丁的平均数最大,方差最小,成绩最稳当,
所以选丁运动员参加比赛.
故答案为丁.
三、解答题(本大题共5个小题,共48分)
14、(1)(x﹣y)(3a+1b)(3a﹣1b);(1)m=2,n=9,(x+3)1.
【解析】
(1)用提取公因式和平方差公式进行因式分解即可解答;
(1)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.
【详解】
解:(1)原式=9a1(x﹣y)﹣4b1(x﹣y)
=(x﹣y)(9a1﹣4b1)
=(x﹣y)(3a+1b)(3a﹣1b);
(1)∵(x+1)(x+4)=x1+2x+8,甲看错了n,
∴m=2.
∵(x+1)(x+9)=x1+10x+9,乙看错了m,
∴n=9,
∴x1+mx+n=x1+2x+9=(x+3)1.
本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.
15、6名.
【解析】
试题分析:首先设车间每天安排x名工人生产甲种产品,其余工人生产乙种产品,利用使此车间每天所获利润不低于15600元,得出不等关系进而求出即可.
试题解析:设车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
根据题意可得,12x×100+10(10-x)×180≥15600,
解得;x≤4,
∴10-x≥6,
∴至少要派6名工人去生产乙种产品才合适.
考点:一元一次不等式的应用.
16、(1);(2)或;(3)
【解析】
(1)将点分别代入正比例函数解析式以及反比例函数解析式,即可求出的值;
(2)联立正反比例函数解析式求出点B的坐标,可得原点O为的中点,再根据三角形面积公式求解即可;
(3)当时,,根据题意得出,再根据k与m的关系求解即可.
【详解】
解:将代入和
解得
(2)联立,解得:或,
,
∴原点O为的中点,
,
,
或;
,
,
当时,对于的一切总有,
,
,
∵,
∴,
.
本题考查了数形结合的数学思想.解此类题型通常与不等式结合.利用图象或解不等式的方法来解题是关键.
17、(1)见解析;(2)成立,理由见解析;(3)成立,图形见解析
【解析】
(1) 取AB中点P,连接PE,得出∠APE=∠ECF,再根据同角的余角相等得出∠BAE=∠CEF,进而得出ΔAPE≌ΔECF,求出结果;
(2) 在AB上截取BN=BE,类比(1)的证明方法即可得出结果;
(3) 在BA延长线上取一点Q,使BQ=BE,连接EQ, 类比(1)的证明方法即可得出结果.
【详解】
(1)余下证明过程为:
∵∠ABE=90°
∴∠BAE+∠AEB=90°
∵∠AEF=90°
∴∠BAE=∠CEF
∴ΔAPE≌ΔECF
∴AE=EF.
(2)成立
证明:在AB上截取BN=BE
在正方形ABCD中,∠B=∠BCD=90°,AB=BC
∴ΔBNE为等腰三角形,AN=EC
∴∠BNE=45°
∴∠ANE=135°
又因为GH平分∠DCN
∴∠DCF=45°
∴∠ECF=135°
∴∠ANE=∠ECF
由(1)得∠BAE+∠AEB=90°,∠AEB+∠CEF=90°
∴∠BAE=∠CEF
∴ΔANE≌ΔECF
∴AE=EF
(3)如图
证明:在BA延长线上取一点Q,使BQ=BE,连接EQ,
在正方形ABCD中,
∵AB=BC,
∴AQ=CE.
∵∠B=90°,
∴∠Q=45°.
∵CH平分∠DCN,∠DCN=∠DCB=90°,
∴∠HCE=∠Q=45°.
∵AD∥BE,
∴∠DAE=∠AEB.
∵∠AEF=∠QAD=90°,
∴∠QAE=∠CEF.
∴△QAE≌△CEF.
∴AE=EF.
本题是四边形综合题,主要考查了正方形的性质,全等三角形的性质和判定,平行线的性质,解题的关键是利用同角或等角的余角相等.
18、解:(1)①;②详见解析;(2)详见解析;(2)详见解析
【解析】
(1)①由勾股定理可得AB的长;
②连接AO,CO并延长一倍得到,再顺次连接成平行四边形;
(2)画一个对角线长,矩形两边长为,)的矩形即可;
(2)连接AE,BD交于点M,过点M作射线CM交AB于点F,则点F即为所求.
【详解】
解:(1)①由勾股定理可得;
②如图1.连接AO,CO并延长一倍得到,再顺次连接成平行四边形;
(2)如图2(对角线长,矩形两边长为,).
(2)如图2.连接AE,BD交于点M,过点M作射线CM交AB于点F,则点F即为所求.
本题考查了作图-作平行四边形和矩形,也考查了特殊四边形的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
试题分析:根据菱形的对角线互相垂直平分求出OA=4、OB=3,再利用勾股定理列式求出AB=5,然后根据△AOB的面积列式得,解得OH=.
故答案为.
点睛:此题主要考查了菱形的性质,解题时根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据△AOB的面积列式计算即可得解.
20、1
【解析】
根据折叠的性质得AD=AO,CO=BC,∠BCE=∠OCE,所以AC=2BC,则根据含30度的直角三角形三边的关系得∠CAB=30°,于是BC=AB=3,∠ACB=60°,接着计算出∠BCE=30°,然后计算出BE=BC=3,CE=2BE=6,于是可得菱形AECF的周长.
【详解】
解:∵矩形ABCD按如图所示的方式折叠,得到菱形AECF,
∴AD=AO,CO=BC,∠BCE=∠OCE,
而AD=BC,
∴AC=2BC,
∴∠CAB=30°,
∴BC=AB=3,∠ACB=60°,
∴∠BCE=30°,
∴BE=BC=3,
∴CE=2BE=6,
∴菱形AECF的周长=4×6=1.
故答案为:1
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系.
21、2<v<1
【解析】
由∠ACO=45°可设直线AB的解析式为y=-x+b,由点A、B在反比例函数图象上可得出p=,q=,代入点A、B坐标中,再利用点A、B在直线AB上可得=﹣u+b①,=﹣v+b②,两式做差即可得出u关于v的关系式,结合u的取值范围即可得答案.
【详解】
∵∠ACO=45°,直线AB经过二、四象限,
∴设直线AB的解析式为y=﹣x+b.
∵点A(u,p)和点B(v,q)为反比例函数的图象上的点,
∴p=,q=,
∴点A(u,),点B(v,).
∵点A、B为直线AB上的点,
∴=﹣u+b①,=﹣v+b②,
①﹣②得:,
即.
∵<u<2,
∴2<v<1,
故答案为:2<v<1.
本题考查反比例函数与一次函数的综合,根据∠ACO=45°设出直线AB解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键.
22、2:5
【解析】
把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长.联立方程组可求出交点C的坐标,继而求出三角形ABC的面积,再利用xD=xB=2易求D点坐标.又已知yE=yD=2可求出E点坐标.故可求出DE,EF的长,即可得出矩形面积.
【详解】
解:由 x+=0,得x=-1.
∴A点坐标为(-1,0),
由-2x+16=0,得x=2.
∴B点坐标为(2,0),
∴AB=2-(-1)=3.
由 ,解得,
∴C点的坐标为(5,6),
∴S△ABC=AB•6=×3×6=4.
∵点D在l1上且xD=xB=2,
∴yD=×2+=2,
∴D点坐标为(2,2),
又∵点E在l2上且yE=yD=2,
∴-2xE+16=2,
∴xE=1,
∴E点坐标为(1,2),
∴DE=2-1=1,EF=2.
∴矩形面积为:1×2=32,
∴S矩形DEFG:S△ABC=32:4=2:5.
故答案为:2:5.
此题主要考查了一次函数交点坐标求法以及图象上点的坐标性质等知识,根据题意分别求出C,D两点的坐标是解决问题的关键.
23、
【解析】
分析:根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.
详解:由勾股定理得:AB==,∴AC=,
∵点A表示的数是﹣1,∴点C表示的数是﹣1.
故答案为﹣1.
点睛:本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)四边形AEDF是菱形,证明见解析;(2)24;(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;
【解析】
(1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF;(2)由(1)知菱形AEDF对角线互相垂直平分,故AO=AD=4,根据勾股定理得EO=3,从而得到EF=6;(3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.
【详解】
(1)四边形AEDF是菱形,
∵AD平分∠BAC,
∴∠1=∠2,
又∵EF⊥AD,
∴∠AOE=∠AOF=90°
∵在△AEO和△AFO中
∵,
∴△AEO≌△AFO(ASA),
∴EO=FO,
∵EF垂直平分AD,
∴EF、AD相互平分,
∴四边形AEDF是平行四边形
又EF⊥AD,
∴平行四边形AEDF为菱形;
(2)∵EF垂直平分AD,AD=8,
∴∠AOE=90°,AO=4,
在RT△AOE中,∵AE=5,
∴EO==3,
由(1)知,EF=2EO=6;
(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;
∵∠BAC=90°,
∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).
本题考查了菱形的判定和正方形的判定,解题的关键是掌握邻边相等的平行四边形是菱形,有一个角是直角的菱形是正方形.
25、(1)500,20%,12%;(2)110,图见解析;(3)2100人
【解析】
(1)由题意根据“15~40”的百分比和频数可求总数,进而求出a、b的值;
(2)根据题意利用总数和百分比求出频数再补全条形图即可;
(3)根据题意用样本估计总体,进而得出年龄在60岁以上的居民人数即可.
【详解】
解:(1)解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,
0~14岁有100人,60岁以上有60人,所以.
故答案为:500,20%,12%.
(2)由题意可得41-59岁有:22%500=110(人),画图如下,
(3)由题意估计出总人数:(人),
年龄在60岁以上的居民人数:(人).
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.
26、(1)y甲=0.75×120x=90x,y乙=0.8×120(x-1)=96x-96;(2)当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;当人数正好是16人时,选择甲、乙旅行社一样.
【解析】
(1)设共有x人由题意得:甲旅行社的花费=120×人数×七五折;乙旅行社的花费=120×(人数-1)×八折;
(2)分三种情况:①y甲=y乙时,②y甲>y乙时,③y甲<y乙时,分别列出方程或不等式进行计算即可.
【详解】
(1)设共有x人,则
y甲=0.75×120x=90x,
y乙=0.8×120(x-1)=96x-96;
(2)由y甲=y乙得,90x=96x-96,
解得:x=16,
y甲>y乙得,90x>96x-96,
解得:x<16,
y甲<y乙得,90x<96x-96,
解得:x>16,
所以,当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;
当人数正好是16人时,选择甲、乙旅行社一样.
此题考查一元一次不等式和方程的应用,关键是正确理解题意,找出题目中不等关系,再列出不等式.
题号
一
二
三
四
五
总分
得分
成绩(分)
人数
甲
乙
丙
丁
平均数
9.14
9.15
9.14
9.15
方差
6.6
6.8
6.7
6.6
2024-2025学年山东省平原县九年级数学第一学期开学联考试题【含答案】: 这是一份2024-2025学年山东省平原县九年级数学第一学期开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省德州市平原县2023届九年级下学期一模考试数学试卷(含答案): 这是一份山东省德州市平原县2023届九年级下学期一模考试数学试卷(含答案),共13页。试卷主要包含了答卷前,考生务必用0,第Ⅱ卷必须用0,某款“不倒翁”等内容,欢迎下载使用。
2023年山东省德州市平原县中考一模数学试题(含答案解析): 这是一份2023年山东省德州市平原县中考一模数学试题(含答案解析),共28页。