山东省东营市垦利区2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开
这是一份山东省东营市垦利区2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列一元二次方程没有实数根的是( )
A.+2x+1=0B.+x-2=0C.+1=0D.﹣2x﹣1=0
2、(4分)正方形具有而菱形不具有的性质是( )
A.对角线互相平分B.对角线相等
C.对角线平分一组对角D.对角线互相垂直
3、(4分)下列各曲线中,表示是的函数是( )
A.B.C.D.
4、(4分)下列计算正确的是( )
A.3﹣2=1B.(1﹣)(1+)=﹣1
C.(2﹣)(3+)=4D.(+)2=5
5、(4分)下列式子:①;②;③;④.其中是的函数的个数是( )
A.1B.2C.3D.4
6、(4分)不等式x≤-1的解集在数轴上表示正确的是()
A.B.
C.D.
7、(4分)下列计算,正确的是( )
A.B.
C.D.
8、(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是( )
A.10B.11C.12D.13
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程-x=1的根是______
10、(4分)若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.
11、(4分)在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:
则这10个小组植树株数的方差是_____.
12、(4分)有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为 .
13、(4分)将直线y= 7x向下平移2个单位,所得直线的函数表达式是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.
(1)当AB=2时,求GC的长;
(2)求证:AE=EF.
15、(8分)如图,在矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,求CF的长.
16、(8分)在等边三角形ABC中,高AD=m,求等边三角形ABC的面积.
17、(10分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:
(1)当参加老师的人数为多少时,两家旅行社收费相同?
(2)求出y1、y2关于x的函数关系式?
(3)如果共有50人参加时,选择哪家旅行社合算?
18、(10分)在的方格纸中,四边形的顶点都在格点上.
(1)计算图中四边形的面积;
(2)利用格点画线段,使点在格点上,且交于点,计算的长度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。
20、(4分)把点向上平移个单位长度,再向右平移个单位长度后得到点,则点的坐标是_____.
21、(4分)已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是 _______________
22、(4分)如图,,请你再添加一个条件______,使得(填一个即可).
23、(4分)如果的值为负数,则 x 的取值范围是_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知△ABC中,∠B=90 º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求PQ的长;
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
25、(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,1),B(0,3),C(0,1).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.
26、(12分)如图,在平行四边形ABCD中,AC,BD相交于点O,点E,F在AC上,且OE=OF.
(1)求证:BE=DF;
(2)当线段OE=_____时,四边形BEDF为矩形,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分别计算每个方程中根的判别式△(b2-4ac)的值,找出△0,方程有两个不相等的实数根;
选项C,△=b2-4ac=0-4×1×1=-40,方程有两个不相等的实数根.
故选C.
本题考查了一元二次方程根的情况与判别式△的关系,一元二次方程根的情况与判别式△的关系为:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
2、B
【解析】
根据正方形和菱形的性质逐项分析可得解.
【详解】
根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,
故选B.
考点:1.菱形的性质;2.正方形的性质.
3、B
【解析】
对于x的每一个值,y都有唯一的值与它对应,则称y是x的函数,据此观察图象可得.
【详解】
解:A,C,D曲线,对于每一个x值,都有2个y值与它对应,因此不符合函数的定义,B中一个x对应一个y值,故B曲线表示y是x的函数.
故答案为:B
本题考查了函数的定义,准确把握定义是解题的关键.
4、B
【解析】
根据二次根式的混合运算顺序和运算法则逐一计算可得.
【详解】
A、此选项错误;
B、此选项正确;
C、 此选项错误;
D、,此选项错误;
故选:B.
本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.
5、C
【解析】
根据以下特征进行判断即可:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.
【详解】
解:①y=3x-5,y是x的函数;
②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;
③y=|x|,y是x的函数.
④,y是x的函数.
以上是的函数的个数是3个.
故选:C.
本题主要考查的是函数的概念,掌握函数的定义是解题的关键.
6、B
【解析】
根据数轴的表示方法表示即可.(注意等于的时候是实心的原点.)
【详解】
根据题意不等式x≤-1的解集是在-1的左边部分,包括-1.
故选B.
本题主要考查实数的数轴表示,注意有等号时应用实心原点表示.
7、C
【解析】
根据二次根式的运算法则,化简各式进行.
【详解】
A、+,故A选项错误;
B、-4<0,-9<0,没有意义,故B选项错误;
C、,故C选项正确;
D、,故D选项错误.
故选:C.
此题考查二次根式的性质与化简,解题关键在于掌握运算法则
8、C
【解析】
根据多边形的内角和定理:(n−2)×180°求解即可.
【详解】
解:由题意可得:180°•(n﹣2)=150°•n,
解得n=1.
故多边形是1边形.
故选:C.
主要考查了多边形的内角和定理.n边形的内角和为:(n−2)×180°.此类题型直接根据内角和公式计算可得.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x=3
【解析】
先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.
【详解】
解:整理得:=x+1,
方程两边平方,得:2x+10=x2+2x+1,
移项合并同类项,得:x2=9,
解得:x1=3,x2=-3,
经检验,x2=-3不是原方程的解,
则原方程的根为:x=3.
故答案为:x=3.
本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.
10、1;
【解析】
根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.
【详解】
解:∵等腰三角形的两条边长分别为3cm,8cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,
∴等腰三角形的周长=16+16+8=1cm.
故答案为1.
本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.
11、0.1.
【解析】
求出平均数,再利用方差计算公式求出即可:
根据表格得,平均数=(5×3+1×4+7×3)÷10=1.
∴方差=.
【详解】
请在此输入详解!
12、AB=2BC.
【解析】
过A作AE⊥BC于E、作AF⊥CD于F,
∵甲纸条的宽度是乙纸条宽的2倍,
∴AE=2AF,
∵纸条的两边互相平行,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AD=BC,
∵∠AEB=∠AFD=90°,
∴△ABE∽△ADF,
∴,即.
故答案为AB=2BC.
考点:相似三角形的判定与性质.
点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.
13、y=7x-2
【解析】
根据一次函数平移口诀:上加下减,左加右减,计算即可.
【详解】
将直线y= 7x向下平移2个单位,则y=7x-2.
本题是对一次函数平移的考查,熟练掌握一次函数平移口诀是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1) (2)证明见解析
【解析】
试题分析:(1)由△ABE∽△ECG,得到AB:EC=BE:GC,从而求得GC的长即可求得S△GEC;
(2)取AB的中点H,连接EH,利用ASA证明△AHE≌△ECF,从而得到AE=EF;
试题解析:(1)∵AB=BC=2,点E为BC的中点,∴BE=EC=1,∵AE⊥EF,∴△ABE∽△ECG,∴AB:EC=BE:GC,即:2:1=1:GC,解得:GC=,∴S△GEC=•EC•CG=×1×=;
(2)取AB的中点H,连接EH,∵ABCD是正方形,AE⊥EF,∴∠1+∠AEB=90°,∠2+∠AEB=90°,∴∠1=∠2,∵BH=BE,∠BHE=45°,且∠FCG=45°,∴∠AHE=∠ECF=135°,AH=CE,∴△AHE≌△ECF,∴AE=EF;
考点:1.全等三角形的判定与性质;2.正方形的性质;3.综合题.
15、.
【解析】
证△AEF≌△ADF,推出AE=AD=5,EF=DF,在△ABE中,由勾股定理求出BE=3,求出CE=2,设CF=x,则EF=DF=4﹣x,在Rt△CFE中,由勾股定理得出方程(4﹣x)2=x2+22,求出x即可.
【详解】
∵AF平分∠DAE,
∴∠DAF=∠EAF,
∵四边形ABCD是矩形,
∴∠D=∠C=90°,AD=BC=5,AB=CD=4,
∵EF⊥AE,
∴∠AEF=∠D=90°,
在△AEF和△ADF中,
,
∴△AEF≌△ADF(AAS),
∴AE=AD=5,EF=DF,
在△ABE中,∠B=90°,AE=5,AB=4,由勾股定理得:BE=3,
∴CE=5﹣3=2,
设CF=x,则EF=DF=4﹣x,
在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,
∴(4﹣x)2=x2+22,
x=,
CF=.
本题考查了矩形的性质,全等三角形的性质和判定,角平分线性质,勾股定理等知识点,主要考查学生推理和计算能力,用了方程思想.
16、S=.
【解析】
如图,求出BC的长即可解决问题.
【详解】
解:如图,
设等边三有形边长为,由勾股定理,得:
,
∴
∴面积为:S=
本题考查等边三角形的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
17、(1)当参加老师的人数为30时,两家旅行社收费相同;(2)y2=40x+600;(3)如果共有50人参加时,选择乙家旅行社合算,理由见解析
【解析】
(1)根据函数图象和图象中的数据可以得到当参加老师的人数为多少时,两家旅行社收费相同;
(2)根据函数图象中的数据可以求得y1、y2关于x的函数关系式;
(3)根据函数图象可以得到如果共有50人参加时,选择哪家旅行社合算.
【详解】
解:(1)由图象可得,
当参加老师的人数为30时,两家旅行社收费相同;
(2)设y1关于x的函数关系式是y1=ax,
30a=1800,得a=60,
即y1关于x的函数关系式是y1=60x;
设y2关于x的函数关系式是y2=kx+b,
,得,
即y2关于x的函数关系式是y2=40x+600;
(3)由图象可得,
当x>50时,乙旅行社比较合算,
∴如果共有50人参加时,选择乙家旅行社合算.
本题考查一次函数的应用、方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
18、(1);(2)
【解析】
(1)先证明是直角三角形,然后将四边形分为可得出四边形的面积;
(2)根据格点和勾股定理先作出图形,然后由面积法可求出DF的值。
【详解】
解:(1)由图可得
是直角三角形
(2)如图,即为所求作的线段
又,且,
本题考查了勾股定理及其逆定理的应用,考查了复杂作图-作垂线,要求能灵活运用公式求面积和已经面积求高。
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x<
【解析】
先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.
【详解】
解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),
∴3=2m,
解得m,
∴点A的坐标是(,3),
∴不等式2x<ax+4的解集为x<.
此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
20、
【解析】
根据向上平移纵坐标加,向右平移横坐标加解答即可.
【详解】
解:点(-2,1)向上平移2个单位长度,纵坐标变为1+2=3,
向右平移3个单位长度横坐标变为-2+3=1,
所以,点B的坐标为(1,3).
故答案为:(1,3).
本题本题考查了坐标系中点的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
21、m<
【解析】
当x1<0<x2时,有y1<y2根据两种图象特点可知,此时k>0,所以1-2m>0,解不等式得m<1/2 .
故答案为m<1/2 .
22、(答案不唯一)
【解析】
注意两个三角形有一个公共角∠A,再按照三角形全等的判定方法结合图形添加即可.
【详解】
解:∵∠ A=∠ A, AB=AC,
∴若按照SAS可添加条件AD=AE;
若按照AAS可添加条件∠ ADB=∠AEC;
若按照ASA可添加条件∠B=∠C;
故答案为AD=AE或∠ADB=∠AEC或∠B=∠C.
本题考查了全等三角形的判定方法,熟练掌握判定三角形全等的各种方法是解决此类问题的关键.
23、.
【解析】
根据分式的值为负数,分子的最小值为1,得出分母小于0列出关于x的不等式,求出不等式的解集即可得到x的范围.
【详解】
∵,,
∴,
解得.
故答案为
本题考查分式的值.分式的值要为负,那么分母和分子必须异号,在本题中分子已经为正,那么分母只能为负.
二、解答题(本大题共3个小题,共30分)
24、(1);(2);(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形
【解析】
(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;
(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;
(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=24,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.
【详解】
(1)当t=2时BQ=2×2=4 cm,BP=AB-AP=16-2×1=14 cm ,∠B=90°,
∴PQ= = cm
(2)依题意得: BQ=2t ,BP=16-t
2t =16-t 解得:t=
即出发秒钟后,△PQB能形成等腰三角形;
(3) ①当CQ=BQ时(如下图),则∠C=∠CBQ,
∵∠ABC=90°
∴∠CBQ+∠ABQ=90°
∠A+∠C=90°
∴∠A=∠ABQ
∴BQ=AQ
∴CQ=AQ=10
∴BC+CQ=22
∴t=22÷2=11秒
②当CQ=BC时(如图2),则BC+CQ=24
∴t=24÷2=12秒
③当BC=BQ时(如图3),过B点作BE⊥AC于点E,
则BE= ,
∴CE=,
故CQ=2CE=14.4,
所以BC+CQ=26.4,
∴t=26.4÷2=13.2秒
由上可知,当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形
此题考查勾股定理,等腰三角形的判定,解题关键在于作辅助线.
25、(1)画图见解析;(2)1
【解析】
试题分析:(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;
(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B为菱形,然后利用菱形的面积公式计算即可.
试题解析:(1)如图,△A1B1C1为所作:
(2)四边形AB1A1B的面积=×6×4=1.
考点:作图-旋转变换;作图题.
26、 (1)见解析;(2)OD.
【解析】
(1)运用平行四边形性质,对角线相互平分,即可确定BO=OD,然后运用线段的和差即可求得BE=DF.
(2)根据矩形对角线相等且相互平分,可确定OE=OD
【详解】
(1)证明:分别连接DE、BF
∵四边形ABCD是平行四边形
∴OB=OD
又∵OE=OF
∴四边形DEBF是平行四边形
∴BE=DF
(2)当OE=OD时,四边形BEDF是矩形
∵OE=OF,OB=OD
∴四边形BEDF是平行四边形
又∵OE=OD,EF=2OE,BD=20D
∴EF=BD
∴四边形BEDF是矩形
本题主要考查了平行四边形额性质和矩形的判定,有一定难度,需要认真审题和分析.
题号
一
二
三
四
五
总分
得分
植树株数(株)
5
6
7
小组个数
3
4
3
相关试卷
这是一份2024-2025学年山东省东营市垦利县数学九年级第一学期开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省东营市垦利区九年级数学第一学期开学学业质量监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省垦利区2023-2024学年九年级数学第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,△OAB∽△OCD,OA,在中,=90〫,,则的值是等内容,欢迎下载使用。