![山东省济南市重点中学2025届数学九上开学监测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16288007/0-1729810911219/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省济南市重点中学2025届数学九上开学监测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16288007/0-1729810911251/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省济南市重点中学2025届数学九上开学监测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16288007/0-1729810911277/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省济南市重点中学2025届数学九上开学监测试题【含答案】
展开
这是一份山东省济南市重点中学2025届数学九上开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,如图,正方形的面积为25,菱形的面积为20,求阴影部分的面积()
A.11B.6.5C.7D.7.5
2、(4分)若与最简二次根式是同类二次根式,则m的值为( )
A.7B.11C.2D.1
3、(4分)菱形的两条对角线长为6和8,则菱形的边长和面积分别为( )
A.10,24B.5, 24C.5, 48D.10,48
4、(4分)如图,五边形ABCDE的每一个内角都相等,则外角∠CBF等于( )
A.60°B.72°C.80°D.108°
5、(4分)如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )
A.4cmB.6cmC.8cmD.10cm
6、(4分)满足下列条件的四边形不是正方形的是( )
A.对角线相互垂直的矩形B.对角线相等的菱形
C.对角线相互垂直且相等的四边形D.对角线垂直且相等的平行四边形
7、(4分)如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于( )
A.B.C.D.
8、(4分)下列计算结果正确的是( )
A.+=B.3-=3
C.×=D.=5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC中,∠C=90°,若AB=17, 则正方形ADEC和BCFG的面积的和为________.
10、(4分)菱形ABCD的两条对角线长分别为6cm和8cm,则菱形ABCD的面积为_____;周长为______.
11、(4分)若最简二次根式和是同类二次根式,则______.
12、(4分)若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝1.
13、(4分)在△ABC中,BC=a.作BC边的三等分点C1,使得CC1:BC1=1:2,过点C1作AC的平行线交AB于点A1,过点A1作BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2:BC2=1:2,过点C2作AC的平行线交AB于点A2,过点A2作BC的平行线交A1C1于点D2;如此进行下去,则线段AnDn的长度为______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:
(1)共抽取了 名同学进行调查,同学们的睡眠时间的中位数是 小时左右,并将条形统计图补充完整;
(2)请你估计年级每个学生的平均睡眠时间约多少小时?
15、(8分)如图,在矩形中,,,点从点出发向点运动,运动到点停止,同时,点从点出发向点运动,运动到点即停止,点、的速度都是每秒1个单位,连接、、.设点、运动的时间为秒
(1)当为何值时,四边形是矩形;
(2)当时,判断四边形的形状,并说明理由;
16、(8分)已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.
17、(10分)已知,求代数式的值。
18、(10分)计算:
(1).
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是 ______
20、(4分)如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.
21、(4分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=___.
22、(4分)对分式和进行通分,它们的最简公分母是________.
23、(4分)如图,在RtACB中,∠C=90°,AB=2,以点B为圆心,适当长为半径画弧,分别交边AB,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点P,作射线BP交AC于点D,若CD=1,则ABD的面积为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在进行二次根式运算时,我们有时会碰上如这样的式子,我们还可以将其进一步化简:以上这种化简过程叫做分母有理化.还可以尝试用以下方法化简:
(1)请用两种不同的方法化简;
(2)请任选一种方法化简:
25、(10分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.
(1)断⊿BEC的形状,并说明理由;
(2)判断四边形EFPH是什么特殊四边形?并证明你的判断.
26、(12分)在△ABC中,AB=30,BC=28,AC=1.求△ABC的面积.
某学习小组经过合作交流给出了下面的解题思路,请你按照他们的解题思路完成解答过程.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.
【详解】
∵正方形ABCD的面积是25,
∴AB=BC=BP=PQ=QC=5,
又∵S菱形BPQC=PQ×EC=5×EC=20,
∴S菱形BPQC=BC•EC,
即20=5•EC,
∴EC=4
在Rt△QEC中,EQ==3;
∴PE=PQ-EQ=2,
∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.
故选A.
此题考查菱形的性质,正方形的性质,解题关键在于利用勾股定理进行计算.
2、C
【解析】
几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.
【详解】
解:,当m=7时,,故A错误;当m=11时,,此时不是最简二次根式,故B错误;当m=1时,,故D错误;
当m=2时,,故C正确;
故选择C.
本题考查了同类二次根式的定义.
3、B
【解析】
分析:根据菱形的性质可求得其边长,根据面积公式即可得到其周面积.
详解:根据菱形对角线的性质,可知OA=4,OB=3,由勾股定理可知AB=5,
根据菱形的面积公式可知,它的面积=6×8÷2=1.
故选B.
点睛:本题主要考查了菱形的面积的计算方法:面积=两条对角线的积的一半.
4、B
【解析】
由题意可知五边形的每一个外角都相等,五边形的外角和为,由计算即可求得 ∠CBF 的大小.
【详解】
解:因为五边形的每一个内角都相等,所以五边形的每一个外角都相等,则每个外角=.
故答案为: B
本题考查了多边形的外角和,n边形的外角和为,若多边形的外角都相等即可知每个外角的度数,熟练掌握多边形的外角和定理是解题的关键.
5、A
【解析】
由题意可知∠DFE=∠CDF=∠C=90°,DC=DF,
∴四边形ECDF是正方形,
∴DC=EC=BC-BE,
∵四边形ABCD是矩形,
∴BC=AD=10,
∴DC=10-6=4(cm).
故选A.
6、C
【解析】
A.对角线相互垂直的矩形是正方形,故本项正确;B. 对角线相等的菱形是正方形,故本项正确;C.对角线互相垂直、平分、且相等的四边形才是正方形,故本项错误;D. 对角线垂直且相等的平行四边形是正方形,故本项正确.故选C.
7、B
【解析】
试题解析:因为AB=3,AD=4,所以AC=5, ,由图可知 ,AO=BO,则 ,
因此 ,故本题应选B.
8、C
【解析】
选项A. 不能计算.A错误.
选项B. ,B错误.
选项C. ,正确.
选项 D. ,D错误.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、189
【解析】
【分析】小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC1+BC1,对于Rt△ABC,由勾股定理得AB1=AC1+BC1.AB长度已知,故可以求出两正方形面积的和.
【详解】正方形ADEC的面积为:AC1,
正方形BCFG的面积为:BC1;
在Rt△ABC中,AB1=AC1+BC1,AB=17,
则AC1+BC1=189,
故答案为:189.
【点睛】本题考查了勾股定理的应用,勾股定理应用的前提条件是在直角三角形中.
10、24 cm2 20 cm
【解析】
分析:菱形的面积等于对角线积的一半;菱形的对角线互相垂直且平分构建直角三角形后,用勾股定理求.
详解:根据题意得,菱形的面积为×6×8=24cm2;
菱形的周长为4×=4×5=20cm.
故答案为24cm2;20cm.
点睛:本题考查了菱形的性质,菱形的对角线互相平分且垂直,菱形的面积等于对角线积的一半,菱形中常常根据对角线的性质构造直角三角形,用勾股定理求线段的长.
11、4
【解析】
根据被开方数相同列式计算即可.
【详解】
∵最简二次根式和是同类二次根式,
∴a-1=11-2a,
∴a=4.
故答案为:4.
本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.
12、14
【解析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
解:根据对角线的长可以求得菱形的面积,
根据S=ab=×6×8=14cm1,
故答案为14.
13、
【解析】
根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.
【详解】
∵A1C1∥AC,A1D1∥BC,
∴四边形A1C1CD1为平行四边形,
∴A1D1=C1C=a=,
同理,四边形A2C2C1D2为平行四边形,
∴A2D2=C1C2=a=,
……
∴线段AnDn=,
故答案为:.
本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)20,6;(2)估计年级每个学生的平均睡眠时间约6.3小时
【解析】
分析:(1)由B的人数和所占百分数求出共抽取的人数;再求出E和A的人数,由中位数的定义求出中位数,再将条形统计图补充完整即可;
(2)求出所抽取的20名同学的平均睡眠时间,即可得出结果.
详解:(1)共抽取的同学人数=6÷30%=20(人),
睡眠时间7小时左右的人数=20×=5(人),睡眠时间8小时左右的人数=20﹣6﹣2﹣3﹣5=4(人),
按照睡眠时间从小到大排列,各组人数分别为2,3,6,5,4,睡眠时间分别为4,5,6,7,8,共有20个数据,
第10个和第11个数据都是6小时,它们的平均数也是6小时,
∴同学们的睡眠时间的中位数是6小时左右;
故答案为20,6;
将条形统计图补充完整如图所示:
(2)∵平均数为(4×8+6×6+2×4+3×5+5×7)=6.3(小时),
∴估计年级每个学生的平均睡眠时间约6.3小时.
点睛:本题考查了条形统计呼和扇形统计图以及中位数和平均数的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
15、(1);(2)当时,四边形为菱形,理由见解析.
【解析】
(1)由矩形性质得出,,由已知可得,,,当时,四边形为矩形,得出方程,解方程即可;
(2)时,,,得出,,,,四边形为平行四边形,在中,与勾股定理求出,得出,即可得出结论.
【详解】
解:(1)在矩形中,,,
,,
由已知可得,,,
在矩形中,,,
当时,四边形为矩形,
,
解得:,
当时,四边形为矩形;
(2)四边形为菱形;理由如下:
,
,,
,,
,,
四边形为平行四边形,
在中,,
,
平行四边形为菱形,
当时,四边形为菱形;
本题考查了矩形的判定与性质、菱形的判定、勾股定理、平行四边形的判定等知识;熟练掌握判定与性质是解题的关键.
16、135º.
【解析】
在直角△ABC中,由勾股定理求得AC的长,在△ACD中,因为已知三角形的三边的长,可用勾股定理的逆定理判定△ACD是不是直角三角形.
【详解】
解:∵∠B=90°,AB=BC=2,
∴AC==2,∠BAC=45°,
又∵CD=3,DA=1,
∴AC2+DA2=8+1=9,CD2=9,
∴AC2+DA2=CD2,
∴△ACD是直角三角形,
∴∠CAD=90°,
∴∠DAB=45°+90°=135°.
17、
【解析】
把x的值直接代入,再根据乘法公式进行计算即可.
【详解】
解:当时,
此题主要考查整式的运算,解题的关键是熟知整式的运算公式.
18、 (1)3-2+2;(2)2.
【解析】
(1)先算负整数指数幂,0次幂,绝对值,化简二次根式,再进一步合并即可;
(2)利用二次根式混合运算顺序,把二次根式化简,先算乘除再算加减.
【详解】
(1)解:原式=4-1-2+2
=3-2+2.
(2)解:原式=2+1-3+2
=2.
此题考查实数和二次根式的混合运算,掌握运算顺序与化简的方法是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>1
【解析】
分析:根据两直线的交点坐标和函数的图象即可求出答案.
详解:∵直线y1=kx+b与直线y2=mx交于点P(1,m),
∴不等式mx>kx+b的解集是x>1,
故答案为x>1.
点睛:解答本题的关键是熟练掌握图象在上方的部分对应的函数值大,图象在下方的部分对应的函数值小.
20、.
【解析】
设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.
【详解】
解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,如图:
∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,
∴∠OAD=∠BOE,
同理可得∠AOD=∠OBE,
在△AOD和△OBE中, ,
∴△AOD△OBE(ASA),
∵点B在第四象限,
∴,即,
解得,
∴反比例函数的解析式为:.
故答案为.
本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.
21、1.
【解析】
试题分析:连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,又CD=BD,可得MN=CD,又由MN∥BC,可得四边形DCMN是平行四边形,所以DN=CM,根据直角三角形的性质得到CM=AB=1,即可得DN=1.
考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定与性质.
22、
【解析】
根据确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母即可得出答案.
【详解】
解:分式和的最简公分母是,
故答案为:.
本题考查了最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.
23、
【解析】
过点D作DH⊥AB于H.利用角平分线的性质定理求出DH,然后根据三角形的面积公式即可解决问题.
【详解】
解:如图,过点D作DH⊥AB于H.
∵DC⊥BC,DH⊥AB,BD平分∠ABC,
∴DH=CD=1,
∴S△ABD=•AB•DH=×2×1=,
故答案为:.
本题主要考查角平分线的尺规作图及性质,掌握角平分线的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2).
【解析】
(1)利用分母有理化计算或把分子因式分解后约分;
(2)先分母有理化,然后合并即可.
【详解】
(1)方法一:
方法二:
(2)原式,
,
,
.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
25、(1)△BEC是直角三角形,理由见解析;
(2)四边形EFPH为矩形,证明见解析;
【解析】
(1)由矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;
(2)由矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH∥FP,EF∥HP,推出平行四边形EFPH,根据矩形的判定推出即可;
【详解】
(1)△BEC是直角三角形,
理由是:∵矩形ABCD,
∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,
由勾股定理得:CE===,
同理BE=2,
∴CE2+BE2=5+20=25,
∵BC2=52=25,
∴BE2+CE2=BC2,
∴∠BEC=90°,
∴△BEC是直角三角形.
(2)四边形EFPH为矩形,
∵矩形ABCD,
∴AD=BC,AD∥BC,
∵DE=BP,
∴四边形DEBP是平行四边形,
∴BE∥DP,
∵AD=BC,AD∥BC,DE=BP,
∴AE=CP,
∴四边形AECP是平行四边形,
∴AP∥CE,
∴四边形EFPH是平行四边形,
∵∠BEC=90°,
∴平行四边形EFPH是矩形.
考点:1、勾股定理及逆定理;2、矩形的性质和判定;3、平行四边形的性质和判定;4、三角形的面积
26、△ABC的面积为2
【解析】
根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.
【详解】
解:过点D作AD⊥BC,垂足为点D.
设BD=x,则CD=28﹣x.
在Rt△ABD中,AB=30,BD=x,
由勾股定理可得AD2=AB2﹣BD2=302﹣x2,
在Rt△ACD中,AC=1,CD=28﹣x,
由勾股定理可得AD2=AC2﹣CD2=12﹣(28﹣x)2,
∴302﹣x2=12﹣(28﹣x)2,
解得:x=18,
∴AD2=AB2﹣BD2=302﹣x2=302﹣182=576,
∴AD=24,
S△ABC=BC•AD=×28×24=2
则△ABC的面积为2.
此题考查勾股定理,解题关键是根据题意正确表示出AD2的值.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份山东省济南市商河县2024-2025学年数学九上开学监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份凉山市重点中学2024年九上数学开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份呼和浩特市重点中学2024年数学九上开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)