山东省济宁地区2025届九年级数学第一学期开学调研试题【含答案】
展开
这是一份山东省济宁地区2025届九年级数学第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果一个多边形的内角和等于它的外角和,那么这个多边形是( )
A.六边形B.五边形C.四边形D.三角形
2、(4分)关于x的分式方程有增根,则a的值为( )
A.2B.3C.4D.5
3、(4分)如图,矩形纸片中,,把纸片沿直线折叠,点落在处,交于点,若,则的面积为( )
A.B.C.D.
4、(4分)下列表达式中是一次函数的是( )
A.B.C.D.
5、(4分)计算的结果为( )
A.±3B.-3C.3D.9
6、(4分)如图,▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,OE⊥BD交BC于点E,CD=1,则CE的长为( )
A.B.C.D.
7、(4分)下列各式计算正确的是( )
A.3﹣=3B.2+=2C.=2D.=4
8、(4分)如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有( )
A.点M,点NB.点M,点QC.点N,点PD.点P,点Q
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)多边形的每个外角都等于45°,则这个多边形是________边形.
10、(4分)如图,点P在第二象限内,且点P在反比例函数图象上,PA⊥x轴于点A,若S△PAO的面积为3,则k的值为 .
11、(4分)计算:=_______.
12、(4分)从沿北偏东的方向行驶到,再从沿南偏西方向行驶到,则______.
13、(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于 的二元一次方程组的解是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
甲:购买树苗数量不超过500棵时,销售单价为800元棵;超过500棵的部分,销售单价为700元棵.
乙:购买树苗数量不超过1000棵时,销售单价为800元棵;超过1000棵的部分,销售单价为600元棵.
设购买银杏树苗x棵,到两家购买所需费用分别为元、元
(1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;
(2)当时,分别求出、与x之间的函数关系式;
(3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?
15、(8分)在平面直角坐标系中,正比例函数与反比例函数为的图象交于两点
若点,求的值;
在的条件下,x轴上有一点,满足的面积为,水点坐标;
若,当时,对于满足条件的一切总有,求的取值范围.
16、(8分)为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”短跑运动可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.
(1)请根据图中信息,补齐下面的表格;
(2)从图中看,小明与小亮哪次的成绩最好?
(3)分别计算他们的平均数和方差,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?
17、(10分)阅读下列材料,解决问题:
学习了勾股定理后我们知道:直角三角形两条直角边的平方和等于斜边的平方.根据勾股定理我们定义:如图①,点M、N是线段AB上两点,如果线段AM、MN、NB能构成直角三角形,则称点M、N是线段AB的勾股点
解决问题
(1)在图①中,如果AM=2,MN=3,则NB= .
(2)如图②,已知点C是线段AB上一定点(AC<BC),在线段AB上求作一点D,使得C、D是线段AB的勾股点.李玉同学是这样做的:过点C作直线GH⊥AB,在GH上截取CE=AC,连接BE,作BE的垂直平分线交AB于点D,则C、D是线段AB的勾股点你认为李玉同学的做法对吗?请说明理由
(3)如图③,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H求证:G、H是线段DE的勾股点.
18、(10分)潮州市某学校为了改善办学条件,购置一批电子白板和台式电脑合共24台.经招投标,一台电子白板每台9000元,一台台式电脑每台3000元,设学校购买电子白板和台式电脑总费用为元,购买了台电子白板,并且台式电脑的台数不超过电子白板台数的3倍.
(1)请求出与的函数解析式,并直接写出的取值范围
(2)请问当购买多少台电子白板时,学校购置电子白板和台式电脑的总费用最少,最少多少钱?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若多项式,则=_______________.
20、(4分)根据如图所示的程序,当输入x=3时,输出的结果y=________.
21、(4分)如图,将直线沿轴向下平移后的直线恰好经过点,且与轴交于点,在x轴上存在一点P使得的值最小,则点P的坐标为 .
22、(4分)若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于__________度.
23、(4分)如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)进入夏季用电高峰季节,市供电局维修队接到紧急通知:要到 30 千米远的某乡镇进行紧急抢修,维修工骑摩托车先走,15 分钟后,抢修车装载所需材料出发, 结果两车同时到达抢修点,已知抢修车的速度是摩托车速度的 1.5 倍,求两种车的速 度.
25、(10分)小倩和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴;只知道游乐园D的坐标为(2,﹣2).
(1)画出平面直角坐标系;
(2)求出其他各景点的坐标.
26、(12分)如图,在▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F,求证:四边形BEDF是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据多边形内角和公式:(n-2)×180°和任意多边形外角和为定值360 °列方程求解即可.
【详解】
解:设多边形的边数为n,根据题意列方程得,
(n﹣2)•180°=360°,
n﹣2=2,
n=1.
故选:C.
本题考查的知识点多边形的内角和与外交和,熟记多边形内角和公式是解题的关键.
2、D
【解析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.
【详解】
解:去分母得:x+1=a,
由分式方程有增根,得到x-4=0,即x=4,
代入整式方程得:a=5,
故选:D.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
3、A
【解析】
由矩形的性质可得∠B=90°,AB∥CD,可得∠DCA=∠CAB,由折叠的性质可得BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB=∠DCA,可得AO=OC=5cm,由勾股定理可求OE的长,即可求△ABC的面积.
【详解】
解:∵四边形ABCD是矩形
∴∠B=90°,AB∥CD
∴∠DCA=∠CAB
∵把纸片ABCD沿直线AC折叠,点B落在E处,
∴BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB,
∴∠DCA=∠EAC
∴AO=OC=5cm
∴,
∴AE=AO+OE=8cm,
∴AB=8cm,
∴△ABC的面积=×AB×BC=16cm2,
故选:A.
本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.
4、B
【解析】
根据一次函数解析式的结构特征可知,其自变量的最高次数为1、系数不为零,常数项为任意实数,即可解答
【详解】
A. 是反比例函数,故本选项错误;
B. 符合一次函数的定义,故本选项正确;
C. 是二次函数,故本选项错误;
D. 等式中含有根号,故本选项错误.
故选B
此题考查一次函数的定义,解题关键在于掌握其定义
5、C
【解析】
根据=|a|进行计算即可.
【详解】
=|-3|=3,
故选:C.
此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
6、D
【解析】
首先证明四边形ABCD是矩形,在RT△BOE中,易知BE=2EO,只要证明EO=EC即可.
【详解】
∵四边形ABCD是平行四边形,
∴AO=OC,BO=OD,
∵△ABO是等边三角形,
∴AO=BO=AB,
∴AO=OC=BO=OD,
∴AC=BD,
∴四边形ABCD是矩形.
∴OB=OC,∠ABC=90°,
∵△ABO是等边三角形,
∴∠ABO=60°,
∴∠OBC=∠OCB=30°,∠BOC=120°,
∵BO⊥OE,
∴∠BOE=90°,∠EOC=30°,
∴∠EOC=∠ECO,
∴EO=EC,
∴BE=2EO=2CE,
∵CD=1,
∴BC=CD=,
∴EC=BC=,
故选:D.
本题考查平行四边形的性质、矩形的判定、等边三角形的性质、等腰三角形的判定等知识,解题的关键是直角三角形30度角的性质的应用,属于中考常考题型.
7、C
【解析】
直接利用二次根式的性质分别计算得出答案.
【详解】
A、3﹣=2,故此选项错误;
B、2+,无法计算,故此选项错误;
C、=2,正确;
D、÷==2,故此选项错误;
故选:C.
考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.
8、C
【解析】
画出中心对称图形即可判断
【详解】
解:观察图象可知,点P.点N满足条件.
故选:C.
本题考查利用旋转设计图案,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、八
【解析】
根据多边形的外角和等于360°,用360°除以多边形的每个外角的度数,即可得出这个多边形的边数.
【详解】
解:∵360°÷45°=8,
∴这个多边形是八边形.
故答案为:八.
此题主要考查了多边形的外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于360°.
10、-6
【解析】
由△PAO的面积为3可得=3,再结合图象经过的是第二象限,从而可以确定k值;
【详解】
解:∵S△PAO=3,
∴=3,
∴|k|=6,
∵图象经过第二象限,
∴k
相关试卷
这是一份2025届山东省青州市数学九年级第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省济宁鱼台县联考九年级数学第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省济宁市市中学区九年级数学第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。