山东省临沂市经济技术开发区2025届九上数学开学经典模拟试题【含答案】
展开
这是一份山东省临沂市经济技术开发区2025届九上数学开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
A.众数B.方差C.平均数D.中位数
2、(4分)一元二次方程的根是( )
A.x 0B.x 1C.x 0, x 1D.无实根
3、(4分)在数轴上表示不等式x≥-2的解集 正确的是( )
A.B.
C.D.
4、(4分)如图,在平面直角坐标系中,点的坐标为,点的坐标为,以点为圆心,长为半径画弧,交轴的负半轴于点,则点的坐标为( )
A.B.C.D.
5、(4分)若点在第四象限,则的取值范围是( )
A.B.C.D.
6、(4分)正方形具有而菱形不一定具有的性质是( )
A.四边相等B.对角线相等C.对角线互相垂直D.对角线互相平分
7、(4分)下列式子:①y=3x﹣5;②y=;③y=;④y2=x;⑤y=|x|,其中y是x的函数的个数是( )
A.2个B.3个C.4个D.5个
8、(4分)已知( ).
A.3B.-3C.5D.-5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:(2+)(2-)=_______.
10、(4分)如图,小明作出了边长为2的第1个正△,算出了正△的面积.然后分别取△的三边中点、、,作出了第2个正△,算出了正△的面积;用同样的方法,作出了第3个正△,算出了正△的面积,由此可得,第2个正△的面积是__,第个正△的面积是__.
11、(4分)小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.
12、(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如下表,则这四人中水平发挥最稳定的是________.
13、(4分)一次函数的图像是由直线__________________而得.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线与坐标轴交于点、两点,直线与直线相交于点,交轴于点,且的面积为.
(1)求的值和点的坐标;
(2)求直线的解析式;
(3)若点是线段上一动点,过点作轴交直线于点,轴,轴,垂足分别为点、,是否存在点,使得四边形为正方形,若存在,请求出点坐标,若不存在,请说明理由.
15、(8分)在平行四边形ABCD中,对角线AC、BD交于点O,点E、F在AC上,且AE=CF,求证:DE=BF.
16、(8分)已知,是等边三角形,是直线上一点,以为顶点做 . 交过且平行于的直线于,求证:;当为的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取的中点,连结,然后证明. 从而得到,我们继续来研究:
(1)如图2、当D是BC上的任意一点时,求证:
(2)如图3、当D在BC的延长线上时,求证:
(3)当在的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).
17、(10分)某服装店为了鼓励营业员多销售服装,在原来的支付月薪方式(y1):每月底薪600元,每售出一件服装另支付4元的提成,推出第二种支付月薪的方式(y2),如图所示,设x(件)是一个月内营业员销售服装的数量,y(元)是营业员收入的月薪,请结合图形解答下列问题:
(1)求y1与y2的函数关系式;
(2)该服装店新推出的第二种付薪方式是怎样向营业员支付薪水的?
(3)如果你是营业员,你会如何选择支付薪水的方式?为什么?
18、(10分)如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),
(1)请画出把△ABO向下平移5个单位后得到的△A1B1O1的图形;
(2)请画出将△ABO绕点O顺时针旋转90°后得到的△A2B2O2,并写出点A的对应点A2的坐标。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,,,若,则可以取的值为______.
20、(4分)的小数部分为_________.
21、(4分)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.
22、(4分)矩形中,对角线交于点,,则的长是__________.
23、(4分)如图,小明在“4x5”的长方形内丢一粒花生(将花生看作一个点),则花生落在阴影的部分的概率是_________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.
25、(10分)如图,⊙O为ABC的外接圆,D为OC与AB的交点,E为线段OC延长线上一点,且EACABC.
(1)求证:直线AE是⊙O的切线;
(2)若D为AB的中点,CD3,AB8.
①求⊙O的半径;②求ABC的内心I到点O的距离.
26、(12分)如图,ABCD中,的角平分线交AD于点E,的角平分线交 于点,,,=50°.
(1)求的度数;
(2)求ABCD的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
故本题选:D.
本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.
2、C
【解析】
先移项得到,再把方程左边分解因式得到,原方程转化为或,然后解两个一元一次方程即可.
【详解】
,
,
或,
,.
故选:.
本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.
3、D
【解析】
根据在数轴上表示不等式解集的方法利用排除法进行解答.
【详解】
∵不等式x⩾−2中包含等于号,
∴必须用实心圆点,
∴可排除A. C,
∵不等式x⩾−2中是大于等于,
∴折线应向右折,
∴可排除B.
故选:D.
此题考查在数轴上表示不等式的解集,解题关键在于掌握数轴的表示方法
4、B
【解析】
先根据勾股定理求出AB的长,由于AB=AC,可求出AC的长,再根据点C在x轴的负半轴上即可得出结论.
【详解】
解:∵点A的坐标为(4,0),点的坐标为(0,3),
∴OA=4,OB=3,
∴AB==5,
∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,
∴AC=5,
∴OC=1,
∴点C的坐标为(-1,0).
故选B.
本题考查的是勾股定理在直角坐标系中的运用,根据题意利用勾股定理求出AC的长是解答此题的关键.
5、D
【解析】
根据第四象限内点的坐标特征为(+,-)列不等式求解即可.
【详解】
由题意得
2m-149, ∴x>9.5, ∴放入10小球有水溢出.
12、乙
【解析】
根据方差的定义,方差越小数据越稳定,方差最小的为乙,所以这四人中水平发挥最稳定的是乙.
【详解】
解:由表可知:S乙2=0.015<S丙2=0.025<S甲2=0.035<S丁2=0.1.故四人中乙发挥最稳定.
故答案为:乙.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
13、向上平移五个单位
【解析】
根据“上加下减”即可得出答案.
【详解】
一次函数的图像是由直线向上平移五个单位得到的,
故答案为:向上平移五个单位.
本题考查一次函数图象的平移,熟记“上加下减,左加右减”的平移规律是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1),点为;(2);(3)存在,点为,理由见解析
【解析】
(1)利用一次函数图象上点的坐标特征可求出m的值及点A的坐标;
(2)过点P作PH⊥x轴,垂足为H,则PH=,利用三角形的面积公式结合△PAC的面积为,可求出AC的长,进而可得出点C的坐标,再根据点P,C的坐标,利用待定系数法即可求出直线PC的解析式;
(3)由题意,可知:四边形EMNQ为矩形,设点E的纵坐标为t,利用一次函数图象上点的坐标特征可得出点E的坐标为(t-3,t)、点Q的坐标为(,t),利用正方形的性质可得出关于t的一元一次方程,解之即可得出结论.
【详解】
解:(1)把点代入直线,
即 时,
直线,当时, 得:
,点为
(2)过点作轴,垂足为,由(1)得,
∴
解得:
点为
设直线为,把点、代入,得:
解得:
直线的解析式为
(3)由已知可得,四边形为矩形,
设点的纵坐标为,则 得:
点为
轴
点的纵坐标也为
点在直线上,当时,
又
当时,矩形为正方形,所以
故点为
本题考查了一次函数图象上点的坐标特征、三角形的面积、解一元一次方程、待定系数法求一次函数解析式以及正方形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出m的值及点A的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)利用正方形的性质,找出关于t的一元一次方程.
15、证明见解析.
【解析】
首先连接BE,DF,由四边形ABCD是平行四边形,AE=CF,易得OB=OD,OE=OF,即可判定四边形BEDF是平行四边形,继而证得DE=BF.
【详解】
连接BE,DF,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OA﹣AE=OC﹣CF,
∴OE=OF,
∴四边形BEDF是平行四边形,
∴DE=BF.
考点:1.平行四边形的性质;2.全等三角形的判定与性质.
16、(1)见解析;(2)见解析;(4)见解析,,仍成立
【解析】
(1)在AB上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;
(2)在BA的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形得出∠F=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;
(3)在AB的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论.
【详解】
(1)证明:在AB上截取AF=DC,连接FD,如图所示:
∵△ABC是等边三角形,
∴AB=BC,∠B=60°,
又∵AF=DC,
∴BF=BD,
∴△BDF是等边三角形,
∴∠BFD=60°,
∴∠AFD=120°,
又∵AB∥CE,
∴∠DCE=120°=∠AFD,
而∠EDC+∠ADE=∠ADC=∠FAD+∠B∠ADE=∠B=60°,
∴∠FAD=∠CDE,
在△AFD和△DCE中
,
∴△AFD≌△DCE(ASA),
∴AD=DE;
(2)证明:在BA的延长线上截取AF=DC,连接FD,如图所示:
∵△ABC是等边三角形,
∴AB=BC,∠B=60°,
又∵AF=DC,
∴BF=BD,
∴△BDF是等边三角形,
∴∠F=60°,
又∵AB∥CE,
∴∠DCE=60°=∠F,
而∠FAD=∠B+∠ADB,∠CDE=∠ADE+∠ADB,
又∵∠ADE=∠B=60°,
∴∠FAD=∠CDE,
在△AFD和△DCE中,
,
∴△AFD≌△DCE(ASA),
∴AD=DE;
(3)解:AD=DE仍成立.理由如下:
在AB的延长线上截取AF=DC,连接FD,如图所示:
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∴∠FAD+∠ADB=60°,
又∵AF=DC,
∴BF=BD,
∵∠DBF=∠ABC=60°,
∴△BDF是等边三角形,
∴∠AFD=60°,
又∵AB∥CE,
∴∠DCE=∠ABC=60°,
∴∠AFD=∠DCE,
∵∠ADE=∠CDE+∠ADB=60°,
∴∠FAD=∠CDE,
在△AFD和△DCE中,
,
∴△AFD≌△DCE(ASA),
∴AD=DE.
本题是三角形综合题目,考查了全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解题的关键.
17、 (1)y1=4x+600;y2=8x;(2)没有底薪,每售出一件服装可得提成8元;(3)当售出的衣服少于150件时,选择第一种支付月薪方式;当售出的衣服为150件时,两种支付月薪方式一样;当售出的衣服多于150件时,选择第二种支付月薪方式.
【解析】
(1)根据题意可以直接写出y1与y2的函数关系式;
(2)根据题意和函数图象可以得到该服装店新推出的第二种付薪方式是怎样向营业员支付薪水的;
(3)根据(1)中的函数解析式可以解答本题.
【详解】
解:(1)由题意可得,
y1与x的函数解析式为:y1=4x+600,
y2与x的函数解析式为:y2=x=8x,
即y1与x的函数解析式为y1=4x+600,y2与x的函数解析式为:y2=8x;
(2)由题意可得,
该服装店新推出的第二种付薪方式是,没有底薪,每售出一件服装可得提成8元;
(3)当售出的衣服少于150件时,选择第一次支付月薪方式,
当售出的衣服为150件时,两种支付月薪方式一样,
当售出的衣服多于150件时,选择第二种支付月薪方式,
理由:令4x+600=8x,
解得,x=150,
∴当售出的衣服少于150件时,选择第一种支付月薪方式,
当售出的衣服为150件时,两种支付月薪方式一样,
当售出的衣服多于150件时,选择第二种支付月薪方式.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
18、(1)见解析(2)(3,-1)
【解析】
(1)找到△ABO的三个顶点A、B、O、分别向下平移5个单位,找的它们的对应点A1、B1、O1,连接A1 B1、B1 O1、O1 A1,即可得到题目所要求图形△A1B1O1.
(2) 将△ABO绕点O顺时针旋转90°,则旋转中心O点的对应点O2的坐标仍为(0、0),OA可以看成它所在长方形的对角线,通过旋转长方形即可得到OA的对应线段O2A2,同理得出OB的对应线段O2B2,连接A2B2即可得到△A2B2O2.
【详解】
(1)
(2)由图可知,A2的坐标为(3,﹣1).
本题主要考查图形的平移与旋转,旋转是本题的难点.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
通过画一次函数的图象,从图象观察进行解答,根据当时函数的图象在的图象的上方进行解答即可.
【详解】
如下图由函数的图象可知,当时函数的图象在的图象的上方,即.
故答案为:.
本题考查的是一次函数的图象,利用数形结合进行解答是解答此题的关键.
20、﹣1.
【解析】
解:∵<<,∴1<<5,∴的整数部分是1,∴的小数部分是﹣1.故答案为﹣1.
21、1
【解析】
【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.
【详解】∵数据6,x,3,3,5,1的众数是3和5,
∴x=5,
则这组数据为1、3、3、5、5、6,
∴这组数据的中位数为=1,
故答案为:1.
【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.
22、
【解析】
根据矩形的对角线互相平分且相等可得OA=OC,然后由勾股定理列出方程求解得出BC的长和AC的长,然后根据矩形的对角线互相平分可得AO的长。
【详解】
解:如图,
在矩形ABCD中,OA=OC,
∵∠AOB=60°,∠ABC=90°
∴∠BAC=30°
∴AC=2BC
设BC=x,则AC=2x
∴
解得x=,则AC=2x=2
∴AO==.
本题考查了矩形的对角线互相平分且相等的性质和含30°的直角三角形的性质,以及勾股定理的应用,是基础题。
23、
【解析】
根据题意,判断概率类型,分别算出长方形面积和阴影面积,再利用几何概型公式加以计算,即可得到所求概率.
【详解】
解:长方形面积=4×5=20,
阴影面积=,
∴这粒豆子落入阴影部分的概率为:P=,
故答案为:.
本题给出丢豆子的事件,求豆子落入指定区域的概率.着重考查了长方形、三角形面积公式和几何概型的计算等知识,属于基础题.
二、解答题(本大题共3个小题,共30分)
24、证明见解析.
【解析】
根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可.
【详解】
解:∵四边形ABCD是正方形,
∴AB=BC,∠A=∠ABC=90°,
∴∠CBM+∠ABF=90°,
∵CE⊥BF,
∴∠ECB+∠MBC=90°,
∴∠ECB=∠ABF,
在△ABF和△BCE中,
∴△ABF≌△BCE(ASA),
∴BE=AF.
考点:全等三角形的判定与性质;正方形的性质.
25、(1)见解析;(2)①⊙O的半径;②ABC的内心I到点O的距离为.
【解析】
(1)连接AO,证得EACABC=,,则EAO=EAC+CAO=,从而得证;
(2)①设⊙O的半径为r,则OD=r-3,在△AOD中,根据勾股定理即可得出②作出ABC的内心I,过I作AC,BC的垂线,垂足分别为F,G.设内心I到各边的距离为a,由面积法列出方程求解可得答案.
【详解】
(1)如图,连接AO
则EACABC=.
又∵AO=BO,
∴ACO=CAO=
∴EAO=EAC+CAO=AOC +=
∴EA⊥AO
∴直线AE是⊙O的切线;
(2)①设⊙O的半径为r,则OD=r-3,
∵D为AB的中点,
∴OC⊥AB,ADO=,AD=4
∴,即
解得
②如下图,
∵D为AB的中点,
∴
且CO是的平分线,则内心I在CO上,连接AI,BI,过I作AC,BC的垂线,垂足分别为F,G.
易知DI=FI=GI,设其长为a.由面积可知:
即
解得
∴
∴ABC的内心I到点O的距离为
本题考查了圆的切线的判定,垂径定理,圆周角定理等知识,是中考常见题.
26、(1);(2)1.
【解析】
(1)根据平行四边形的对角相等得出∠ADC=∠ABC=50°,再根据角平分线定义即可求出∠FDC的度数;
(2)根据平行四边形的对边平行得出AE∥BC,利用平行线的性质以及角平分线定义得出∠ABE=∠AEB,由等角对等边得出AE=AB=5,那么AD=AE+DE=8,进而得到▱ABCD的周长.
【详解】
解:(1)∵▱ABCD中,∠ABC=50°,
∴∠ADC=∠ABC=50°,
∵DF平分∠ADC,
(2)四边形ABCD是平行四边形,
∴AE∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AE=AB=5,
∵DE=3,
∴AD=AE+DE=8,
∴▱ABCD的周长=2(AB+AD)=2(5+8)=1.
本题考查了平行四边形的性质,角平分线定义,等腰三角形的判定与性质,难度适中.
题号
一
二
三
四
五
总分
得分
选手
甲
乙
丙
丁
众数(环)
9
8
8
10
方差(环2)
0.035
0.015
0.025
0.27
相关试卷
这是一份山东省临沂市兰山区2024年数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省临沂市12中学2025届数学九上开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省临沂平邑县联考2024年数学九上开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。