山东省青岛六校联考2025届九年级数学第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式的值为5,则x、y扩大2倍后,这个分式的值为( )
A.B.5C.10D.25
2、(4分)使分式有意义的x的取值范围是( )
A.x≥1B.x≤1C.x>1D.x≠1
3、(4分)如图,在平行四边形中,,,的平分线交于点,则的长是( )
A.4B.3C.3.5D.2
4、(4分)如图,将▱ABCD沿对角线AC进行折叠,折叠后点D落在点F处,AF交BC于点E,有下列结论:①△ABF≌△CFB;②AE=CE;③BF∥AC;④BE=CE,其中正确结论的个数是( )
A.1B.2C.3D.4
5、(4分)某人从一鱼摊上买了三条鱼,平均每条元,又从另一个鱼摊上买了两条鱼,平均每条元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是
A.B.C.D.与大小无关
6、(4分)如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于( )
A.6B.8C.14D.28
7、(4分)如图中,点为边上一点,点在上,过点作交于点,过点作交于, 下列结论错误的是( )
A.B.C.D.
8、(4分)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AB,BC,CD,AD的中点.若AC=10,BD=6,则四边形EFGH的面积为( )
A.15B.20C.30D.60
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,根据图中的信息,成绩较稳定的是____.
10、(4分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若OF的长为,则△CEF的周长为______.
11、(4分)小丽计算数据方差时,使用公式S2=,则公式中=__.
12、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,未超过20本的不打折,试写出付款金额(单位:元)与购买数量(单位:本)之间的函数关系_______.
13、(4分)若是整数,则最小的正整数n的值是_____________。
三、解答题(本大题共5个小题,共48分)
14、(12分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148
(1)计算该样本数据的中位数和平均数;
(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?
15、(8分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF
16、(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:
(1)慢车的速度为 km/h,快车的速度为 km/h;
(2)解释图中点C的实际意义并求出点C的坐标;
(3)求当x为多少时,两车之间的距离为500km.
17、(10分)平衡车越来越受到中学生的喜爱,某公司今年从厂家以3000元/辆的批发价购进某品牌平衡车300辆进行销售,零售价格为4200元/辆,暑期将至,公司决定拿出一部分该品牌平衡车以4000元/辆的价格进行促销.设全部售出获得的总利润为y元,今年暑假期间拿出促销的该品牌平衡车数量为x辆,根据上述信息,解答下列问题:
(1)求y与x之间的函数解析式(也称关系式),并直接写出x的取值范围;
(2)若以促销价进行销售的数量不低于零售价销售数量的 ,该公司应拿出多少辆该品牌平衡车促销才能使这批车的销售利润最大?并求出最大利润.
18、(10分)某班进行了一次数学測验,将成绩绘制成频数分布表和频数直方图的一部分如下:
(1)在频数分布表中,的值为________,的值为________;
(2)将频数直方图补充完整;
(3)成绩在分以上(含)的学生人数占全班总人数的百分比是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将一次函数y=﹣2x﹣1的图象向上平移3个单位,则平移后所得图象的解析式是_____.
20、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为 米.
21、(4分)任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
22、(4分)平行四边形ABCD中,∠A=80°,则∠C= °.
23、(4分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值;
(3)当△ABP为等腰三角形时,求t的值
25、(10分)如图,矩形中,分别是的中点,分别交于两点.
求证:(1)四边形是平行四边形;
(2).
26、(12分)二次根式计算:
(1);
(2);
(3)()÷;
(4).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
用、分别代替原式中的、,再根据分式的基本性质进行化简,观察分式的变化即可.
【详解】
根据题意,得
新的分式为.
故选:.
此题考查了分式的基本性质.
2、D
【解析】
要使分式有意义,则必须分母不等于0.
【详解】
使分式有意义,则x-1≠0,所以x≠1.
故选D
本题考核知识点:分式有意义的条件. 解题关键点:记住要使分式有意义,则必须分母不等于0.
3、B
【解析】
根据平行四边形的性质可得,再根据角平分线的性质可推出,根据等角对等边可得,即可求出的长.
【详解】
∵四边形ABCD是平行四边形
∴
∴
∵是的平分线
∴
∴
∴
∴
故答案为:B.
本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.
4、C
【解析】
根据SSS即可判定△ABF≌△CFB,根据全等三角形的性质以及等式性质,即可得到EC=EA,根据∠EBF=∠EFB=∠EAC=∠ECA,即可得出BF∥AC.根据E不一定是BC的中点,可得BE=CE不一定成立.
【详解】
解:由折叠可得,AD=AF,DC=FC,
又∵平行四边形ABCD中,AD=BC,AB=CD,
∴AF=BC,AB=CF,
在△ABF和△CFB中,
∴△ABF≌△CFB(SSS),故①正确;
∴∠EBF=∠EFB,
∴BE=FE,
∴BC﹣BE=FA﹣FE,即EC=EA,故②正确;
∴∠EAC=∠ECA,
又∵∠AEC=∠BEF,
∴∠EBF=∠EFB=∠EAC=∠ECA,
∴BF∥AC,故③正确;
∵E不一定是BC的中点,
∴BE=CE不一定成立,故④错误;
故选:C.
本题考查的是全等三角形的性质和平行四边形的性质,熟练掌握二者是解题的关键.
5、A
【解析】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.利润=总售价-总成本= ×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<0.
【详解】
利润=总售价-总成本= ×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<0
∴0.5b-0.5a<0,
∴a>b.
故选A.
解决本题的关键是读懂题意,找到符合题意的不等关系式.
6、D
【解析】
首先根据题意求出的长度,然后利用菱形的性质以及勾股定理的知识求出的值,最后结合三角形的面积公式即可求出答案.
【详解】
解:四边形是菱形,
,,
菱形的周长为24,
,
,
,
,
,
,
菱形的面积三角形的面积,
故选D.
本题主要考查了菱形的性质,解题的关键是利用菱形的性质以及勾股定理的知识求出的值.
7、A
【解析】
根据三角形的平行线定理:平行于三角形一边的直线截其他两边所在的 直线 ,截得的三角形的三边与原三角形的三边对应成比例,即可得解.
【详解】
根据三角形的平行线定理,可得
A选项,,错误;
B选项,,正确;
C选项,,正确;
D选项,,正确;
故答案为A.
此题主要考查三角形的平行线定理,熟练掌握,即可解题.
8、A
【解析】
根据三角形中位线定理、矩形的判定定理得到平行四边形EFGH为矩形,根据矩形的面积公式计算即可.
【详解】
解:∵点E,F分别为边AB,BC的中点.
∴EF=AC=5,EF∥AC,
同理,HG=AC=5,HG∥AC,EH=BD=3,EH∥BD,
∴EF=HG,EF∥HG,
∴四边形EFGH为平行四边形,
∵EF∥AC,AC⊥BD,
∴EF⊥BD,
∵EH∥BD,
∴∠HEF=90°,
∴平行四边形EFGH为矩形,
∴四边形EFGH的面积=3×5=1.
故选:A.
本题考查中点四边形的概念和性质、掌握三角形中位线定理、矩形的判定定理是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、小明
【解析】
观察图象可得:小明的成绩较集中,波动较小,即方差较小,故小明的成绩较为稳定.
【详解】
解:根据图象可直接看出小明的成绩波动不大,
根据方差的意义知,波动越小,成绩越稳定,
故答案为:小明.
此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
10、18
【解析】
是 的中位线, .
, .
由勾股定理得
.
是 的中线, .
∴△CEF的周长为6.5+6.5+5=18
11、1
【解析】
分析:根据题目中的式子,可以得到的值,从而可以解答本题.
详解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.
故答案为1.
点睛:本题考查了方差、平均数,解答本题的关键是明确题意,求出相应的平均数.
12、
【解析】
本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额与购书数的函数关系式,再进行整理即可得出答案.
【详解】
解:根据题意得:
,
整理得:;
则付款金额(单位:元)与购书数量(单位:本)之间的函数关系是;
故答案为:.
本题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意的取值范围.
13、1
【解析】
是整数则1n一定是一个完全平方数,把1分解因数即可确定.
【详解】
解:∵1=1×1,
∴n的最小值是1.
故答案为:1.
本题考查了二次根式的定义:一般地,我们把形如a(a≥0)的式子叫做二次根式.也考查了=|a|.
三、解答题(本大题共5个小题,共48分)
14、 (1)中位数为150分钟,平均数为151分钟.
(2)见解析
【解析】
(1)根据中位数和平均数的概念求解;
(2)根据(1)求得的中位数,与147进行比较,然后推断该选手的成绩.
【详解】
解:(1)将这组数据按照从小到大的顺序排列为:125,134,140,143,146,148,152,155,162,164,168,175,
则中位数为:
平均数为:
(2)由(1)可得中位数为150分钟,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好.
15、详见解析
【解析】
根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.
【详解】
证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)
16、80 120
【解析】
(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;
(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;
(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.
【详解】
(1)设慢车的速度为akm/h,快车的速度为bkm/h,
根据题意,得 ,解得 ,
故答案为80,120;
(2)图中点C的实际意义是:快车到达乙地;
∵快车走完全程所需时间为720÷120=6(h),
∴点C的横坐标为6,
纵坐标为(80+120)×(6﹣3.6)=480,
即点C(6,480);
(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.
即相遇前:(80+120)x=720﹣500,
解得x=1.1,
相遇后:∵点C(6,480),
∴慢车行驶20km两车之间的距离为500km,
∵慢车行驶20km需要的时间是=0.25(h),
∴x=6+0.25=6.25(h),
故x=1.1 h或6.25 h,两车之间的距离为500km.
考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.
17、(1)y=﹣200x+360000(0≤x≤300);(2)公司应拿出60辆该品牌平衡车促销才能使这批车的销售利润最大,最大利润为348000元.
【解析】
(1)根据“利润=售价-成本”结合“总利润=促销部分的利润+正常零售的利润”列式进行计算即可得;
(2)根据以促销价进行销售的数量不低于零售价销售数量的列出关于x的不等式,然后求出x的取值范围,继而根据一次函数的性质进行求解即可.
【详解】
(1)根据题意得:
y=(4000﹣3000)x+(4200﹣3000)(300﹣x)=﹣200x+360000(0≤x≤300);
(2)根据题意得:x≥(300-x),
解得x≥60,
由(1)可知,y=﹣200x+360000,
∵﹣200<0,
∴y随x的增大而减小,
∴x=60时,y的值增大,最大值为:﹣200×60+360000=348000(元),
答:公司应拿出60辆该品牌平衡车促销才能使这批车的销售利润最大,最大利润为348000元.
本题考查了一次函数的应用,弄清题意,找准各量间的数量关系是解题的关键.
18、(1)10,0.1;(2)答案见解析;(3)占全班总人数百分比为.
【解析】
(1)先计算参加数学測验的总人数,根据a=总人数-各分数段的人的和计算即可得解,b=1-各分数段的频率的和计算即可得解;
(2)根据(1)补全直方图;
(3)求出成绩在分以上(含)的学生人数除以总人数即可.
【详解】
(1)∵参加数学測验的总人数为:
∴,
(2) 如图:该直方图为所求作.
.
(3)成绩在分以上的学生人数为人,全班总人数为人,
占全班总人数百分比为
本题考查了频数(率)分布直方图及频数(率)分布表;概率公式,掌握频数分布直方图及频数分布表是解题的关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=﹣1x+1
【解析】
根据平移法则上加下减可得出解析式.
【详解】
由题意得:平移后的解析式为:y=﹣1x﹣1+3=﹣1x+1.
故答案为:y=﹣1x+1.
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
20、1
【解析】
试题分析:直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.
解:由题意可得:AB=200m,∠A=30°,
则BC=AB=1(m).
故答案为:1.
21、2
【解析】
把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.
【详解】
∵2=1×2,∴F(2)=,故(1)是正确的;
∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;
∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;
∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).
故答案为2.
本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).
22、1
【解析】
试题分析:利用平行四边形的对角相等,进而求出即可.
解:∵四边形ABCD是平行四边形,
∴∠A=∠C=1°.
故答案为:1.
23、4
【解析】
根据等边三角形的性质和含30°的直角三角形的性质解答即可.
【详解】
∵在△ABC中,∠B=∠C=60°,
∴∠A=60°,
∵DE⊥AB,
∴∠AED=30°,
∵AD=1,
∴AE=2,
∵BC=6,
∴AC=BC=6,
∴CE=AC−AE=6−2=4.
故答案为4.
本题考查了等边三角形的性质,解题的关键是熟练的掌握等边三角形的性质.
二、解答题(本大题共3个小题,共30分)
24、【解析】
试题分析:(1)直接根据勾股定理求出BC的长度;
(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;
(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.
试题解析:(1)在Rt△ABC中,BC2=AB2-AC2=52-32=16,
∴BC=4(cm);
(2)由题意知BP=tcm,
①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;
②当∠BAP为直角时,BP=tcm,CP=(t-4)cm,AC=3cm,
在Rt△ACP中,
AP2=32+(t-4)2,
在Rt△BAP中,AB2+AP2=BP2,
即:52+[32+(t-4)2]=t2,
解得:t=,
故当△ABP为直角三角形时,t=4或t=;
(3)①当AB=BP时,t=5;
②当AB=AP时,BP=2BC=8cm,t=8;
③当BP=AP时,AP=BP=tcm,CP=|t-4|cm,AC=3cm,
在Rt△ACP中,AP2=AC2+CP2,
所以t2=32+(t-4)2,
解得:t=,
综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.
考点:勾股定理
25、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据一组对边平行且相等的四边形是平行四边形证明即可;
(2)可证明EG和FH所在的△DEG、△BFH全等即可.
【详解】
解:(1)∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∵E、F分别是AD、BC的中点,
∴AE=AD,CF=BC,
∴AE=CF,
∴四边形AFCE是平行四边形;
(2)∵四边形AFCE是平行四边形,
∴CE∥AF,
∴∠DGE=∠AHD=∠BHF,
∵AB∥CD,
∴∠EDG=∠FBH,
在△DEG和△BFH中 ,
∴△DEG≌△BFH(AAS),
∴EG=FH.
26、(1)8;(2);(3);(4)1.
【解析】
(1)首先化简二次根式,进而利用二次根式加减运算法则得出答案;
(2)首先化简二次根式,进而利用二次根式加减运算法则得出答案;
(3)首先化简二次根式,进而利用二次根式除法运算法则得出答案;
(4)直接利用平方差公式计算得出答案.
【详解】
(1)=3+5=8;
(2),
=,
=;
(3)()÷
=
=;
(4),
=,
=12﹣1,
=1.
此题考查二次根式的加减法计算,混合运算,乘法公式,将每个二次根式正确化简成最简二次根式,再根据运算法则进行计算.
题号
一
二
三
四
五
总分
得分
成绩
频数(人数)
频率
山东省青岛即墨市2024年数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份山东省青岛即墨市2024年数学九年级第一学期开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省青岛黄岛区七校联考2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份山东省青岛黄岛区七校联考2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届广西玉林玉州区七校联考九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份2025届广西玉林玉州区七校联考九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。