![山东省泰安市大津口中学2024年九年级数学第一学期开学统考试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16288217/0-1729811994791/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省泰安市大津口中学2024年九年级数学第一学期开学统考试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16288217/0-1729811994819/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省泰安市大津口中学2024年九年级数学第一学期开学统考试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16288217/0-1729811994842/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省泰安市大津口中学2024年九年级数学第一学期开学统考试题【含答案】
展开
这是一份山东省泰安市大津口中学2024年九年级数学第一学期开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示的数字图形中是中心对称图形的有( )
A.1个B.2个C.3个D.4个
2、(4分)在中,,,,点为边上一动点,于点,于点,则的最小值为( )
A.B.C.D.
3、(4分)下列一元二次方程没有实数根的是( )
A.+2x+1=0B.+x-2=0C.+1=0D.﹣2x﹣1=0
4、(4分)如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O……依此规律,得到等腰直角三角形A2 2OB2 2.则点B2 2的坐标( )
A.(22 2,-22 2)B.(22 016,-22 016)C.(22 2,22 2)D.(22 016,22 016)
5、(4分)下列说法中,正确的是( )
A.同位角相等
B.对角线相等的四边形是平行四边形
C.四条边相等的四边形是菱形
D.矩形的对角线一定互相垂直
6、(4分)下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).
A.
B.
C.
D.
7、(4分)某水资源保护组织对邢台某小区的居民进行节约水资源的问卷调查.某居民在问卷的选项代号上画“√”,这个过程是收集数据中的( )
A.确定调查范围B.汇总调查数据
C.实施调查D.明确调查问题
8、(4分)如果,则a的取值范围是( )
A. B. C. D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)有一个质地均匀的正方体,其六个面上分别写着直角梯形、等腰梯形、矩形、正方形、菱形、平行四边形,投掷这个正方体后,向上的一面的图形是对角线相等的图形的概率是_______;
10、(4分)把直线y=﹣2x+1沿y轴向上平移2个单位,所得直线的函数关系式为_________
11、(4分)如图,等边△ABC内有一点O,OA=3,OB=4,OC=5,以点B为旋转中心将BO逆时针旋转60°得到线段,连接,下列结论:①可以看成是△BOC绕点B逆时针旋转60°得到的;②点O与的距离为5;③∠AOB=150°;④S四边形AOBO′=6+4;⑤=6+.其中正确的结论有_____.(填正确序号)
12、(4分)在新年晚会的投飞镖游戏环节中,名同学的投掷成绩(单位:环)分别是:,,,,,,,则这组数据的众数是________.
13、(4分)如图,一次函数y=kx+b的图象与x轴的交点坐标为(1,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=1;④不等式kx+b>0的解集是x>1.其中说法正确的有_________(把你认为说法正确的序号都填上).
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用天,且甲队单独植树天和乙队单独植树天的工作量相同.
(1)甲、乙两队单独完成此项任务各需多少天?
(2)甲、乙两队共同植树天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的倍.那么甲队至少再单独施工多少天?
15、(8分)如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.
(1)求A点坐标;
(2)求△OAC的面积;
(3)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标;
(4)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.
16、(8分)如图,一次函数y=2x+4的图象分别与x轴,y轴教育点A、点B、点C为x轴一动点。
(1)求A,B两点的坐标;
(2)当ΔABC的面积为6时,求点C的坐标;
(3)平面内是否存在一点D,使四边形ACDB使菱形,若存在,请直接写出点D的坐标;若不存在,请说明理由。
17、(10分)武胜县白坪—飞龙乡村旅游度假村橙海阳光景点组织辆汽车装运完三种脐橙共吨到外地销售.按计划,辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:
设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;
如果装运每种脐橙的车辆数都不少于辆,那么车辆的安排方案有几种?
设销售利润为(元),求与之间的函数关系式;若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
18、(10分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______________.
20、(4分)将直线向下平移4个单位,所得到的直线的解析式为___.
21、(4分)如图,中,,,,点D是AC上的任意一点,过点D作于点E,于点F,连接EF,则EF的最小值是_________.
22、(4分)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出
①AB=__________;
②CD=_______________(提示:过A作CD的垂线);
③BC=_______________.
23、(4分)如图P(3,4)是直角坐标系中一点,则P到原点的距离是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线m的表达式为y =﹣3x+3,且与x轴交于点B,直线n经过点A(4,0),且与直线m交于点C(t,﹣3)
(1)求直线n的表达式.
(2)求△ABC的面积.
(3)在直线n上存在异于点C的另一点P,使△ABP与△ABC的面积相等,请直接写出点P的坐标是 .
25、(10分)解不等式组:,并写出所有整数解.
26、(12分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为(单位:吨/小时),卸完这批货物所需的时间为(单位:小时).
(1)求关于的函数表达式.
(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据中心对称图形的概念解答即可.
【详解】
A.是中心对称图形,
B.是中心对称图形,
C.是中心对称图形,
D.不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与它本身重合.
综上所述:是中心对称图形的有3个,
故选C.
本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.熟练掌握中心对称图形的定义是解题关键.
2、B
【解析】
根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
【详解】
解:∵在△ABC中,AB=3,AC=1,BC=5,
∴AB2+AC2=BC2,
即∠BAC=90°.
又PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=EF=AP.
因为AP的最小值即为直角三角形ABC斜边上的高,即2.1,
∴EF的最小值是2.1.
故选B.
题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.
3、C
【解析】
分别计算每个方程中根的判别式△(b2-4ac)的值,找出△0,方程有两个不相等的实数根;
选项C,△=b2-4ac=0-4×1×1=-40,方程有两个不相等的实数根.
故选C.
本题考查了一元二次方程根的情况与判别式△的关系,一元二次方程根的情况与判别式△的关系为:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
4、A
【解析】
∵将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,A1B 1=OA1,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O,A2B2=A2O…,依此规律,
∴每4次循环一周,B1(2,﹣2),B2(﹣4,-4),B3(-8,8),B4(16,16),
∵22÷4=504…1,
∴点B22与B1同在第四象限,
∵﹣4=﹣22,8=23,16=24,
∴点B22(222,-222),
故选A.
【点睛】本题考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.
5、C
【解析】
解:A、两直线平行,同位角相等;
B、对角线互相平分的四边形为平行四边形;
C、正确;
D、矩形的对角线互相平分且相等.
故选:C
本题考查平行四边形、菱形及矩形的性质,掌握相关图形性质是本题的解题关键.
6、A
【解析】
试题分析:利用知识点:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,知:选项A是轴对称图形,但不是中心对称图形;选项B和C,既是轴对称图形又是中心对称图形;选项D是中心对称图形,但不是轴对称图形.
考点:轴对称图形和中心对称图形的定义
7、C
【解析】
根据收集数据的几个阶段可以判断某居民在问卷上的选项代号画“√”,属于哪个阶段,本题得以解决.
【详解】
解:某居民在问卷上的选项代号画“√”,这是数据中的实施调查阶段,
故选:C.
本题考查调查收集数据的过程与方法,解题的关键是明确收集数据的几个阶段.
8、B
【解析】
试题分析:根据二次根式的性质1可知:,即故答案为B..
考点:二次根式的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
【分析】先求出总的情况和对角线相等的情况,再根据概率公式可求得.
【详解】因为,出现的图形共有6种情况,对角线相等的有(等腰梯形,正方形,矩形)3这情况,所以,P(对角线相等)=
故答案为:
【点睛】本题考核知识点:概率.解题关键点:掌握概率的求法.
10、y=-2x+1
【解析】
试题分析:由题意得:平移后的解析式为:y=﹣2x+1+2=﹣2x+1.
故答案是y=﹣2x+1.
考点:一次函数图象与几何变换.
11、①③⑤
【解析】
如图,首先证明△OBO′为等边三角形,得到OO′=OB=4,故选项②错误;证明△ABO′≌△CBO,得到选项①正确;运用勾股定理逆定理证明△AOO′为直角三角形,求出∠AOB的度数,得到选项③正确;运用面积公式求出四边形AOBO′的面积,可判断选项④错误;将△AOB绕A点逆时针旋转60°至△AO″C,可得△AOO″是边长为3的等边三角形,△COO″是边长为3,4,5的直角三角形,再根据S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″进行计算即可判断选项⑤正确.
【详解】
解:如下图,连接OO′,
∵△ABC为等边三角形,
∴∠ABC=60°,AB=CB;
由题意得:∠OBO′=60°,OB=O′B,
∴△OBO′为等边三角形,∠ABO′=∠CBO,
∴OO′=OB=4;∠BOO′=60°,
∴选项②错误;
在△ABO′与△CBO中,,
∴△ABO′≌△CBO(SAS),
∴AO′=OC=5,
可以看成是△BOC绕点B逆时针旋转60°得到的,
∴选项①正确;
在△AOO′中,∵32+42=52,
∴△AOO′为直角三角形,
∴∠AOO′=90°,∠AOB=90°+60°=150°,
∴选项③正确;
∵S四边形AOBO′=×42×sin60°+×3×4=4+6,
∴选项④错误;
如下图,将△AOB绕A点逆时针旋转60°至△AO″C,连接OO″,
同理可得,△AOO″是边长为3的等边三角形,
△COO″是边长为3,4,5的直角三角形,
∴S△AOC+S△AOB
=S四边形AOCO″
=S△COO″+S△AOO″
=×3×4+×32×sin60°
=6+.
故⑤正确;
故答案为:①③⑤.
本题考查旋转的性质、三角形全等的判定和性质、等边三角形的判定和性质、勾股定理的逆定理,熟练掌握旋转的性质、等边三角形的判定和性质、勾股定理的逆定理的应用是解题的关键.
12、1
【解析】
直接利用众数的定义得出答案.
【详解】
∵7,1,1,4,1,8,8,中1出现的次数最多,
∴这组数据的众数是:1.
故答案为:1.
本题主要考查了众数的定义,解题的关键是掌握众数的定义:一组数据中,出现次数最多的数就叫这组数据的众数.
13、①②③
【解析】
①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确;
②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确;
③因为一次函数的图象与x轴的交点为(1,0),所以当y=0时,x=1,即关于x的方程kx+b=0的解为x=1,故本项正确;
④由图象可得不等式kx+b>0的解集是x<1,故本项是错误的.故正确的有①②③.
三、解答题(本大题共5个小题,共48分)
14、(1)甲队单独完成此项任务需1天,乙队单独完成此项任务需20天;(2)甲队至少再单独施工2天.
【解析】
(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,根据甲队单独植树7天和乙队单独植树5天的工作量相同,可得出关于x的一元一次方程,解之即可得出结论;
(2)设甲队再单独施工y天,根据甲队完成的工作量+乙队完成的工作量不少于总工作量(1),即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.
【详解】
(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,
依题意,得:,
解得:x=20,
经检验,x=20是原方程的解,
∴x+2=1.
答:甲队单独完成此项任务需1天,乙队单独完成此项任务需20天.
(2)设甲队再单独施工y天,
依题意,得:
,
解得:y≥2.
答:甲队至少再单独施工2天.
本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,一元一次不等式的应用,解答时验根是学生容易忽略的地方.
15、(1)A点坐标是(2,3);(2)=;(3)P点坐标是(0, );(4)点Q是坐标是(,)或(,-).
【解析】
解析
联立方程,解方程即可求得;
C点位直线y=﹣2x+7与x轴交点,可得C点坐标为(,0),由(1)得A点坐标,可得的值;
(3)设P点坐标是(0,y),根据勾股定理列出方程,解方程即可求得;
(4)分两种情况:①当Q点在线段AB上:作QD⊥y轴于点D,则QD=x,根据
=-列出关于x的方程解方程求得即可;②当Q点在AC的延长线上时,作QD⊥x轴于点D,则QD=-y,根据=- 列出关于y的方程解方程求得即可.
【详解】
解(1)解方程组:得:,
A点坐标是(2,3);
(2) C点位直线y=﹣2x+7与x轴交点,可得C点坐标为(,0)
==
(3)设P点坐标是(0,y ),
△OAP是以OA为底边的等腰三角形,
OP=PA,
,
解得y=,
P点坐标是(0, ),
故答案为(0, );
(4)存在;
由直线y=-2x+7可知B(0,7),C(,0),
==<6,
==7>6,
Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),
当Q点在线段AB上:作QD⊥y轴于点D,如图1,
则QD=x,=-=7-6=1,
OBQD=1,即: 7x=1,
x=,
把x=代入y=-2x+7,得y=,
Q的坐标是(,),
当Q点在AC的延长线上时,作QD⊥x轴于点D,如图2
则QD=-y,
=- =6-=,
OCQD=,即:,
y=-,
把y=-代入y=-2x+7,解得x=
Q的坐标是(,-),
综上所述:点Q是坐标是(,)或(,-).
本题是一次函数的综合题,考查了交点的求法,勾股定理的应用,三角形面积的求法等,分类讨论思想的运用是解题的关键.
16、(1)点A(-2,0),B(0,4);(2)点C(-5,0)或(1,0);(3)D (-,4)或(,4).
【解析】
(1) 利用坐标轴上点的特点求解即可得出结论;
(2) 根据△AOB的面积,可得出点C的坐标;
(3)根据勾股定理求出AB的长,再利用菱形的性质可得结果,分两种情况讨论.
【详解】
(1)当x=0,y=4
当y=0,x=-2
∴点A(-2,0),B(0,4)
(2)因为A(-2,0),B(0,4)
∴OA=2,OB=4
ΔABC的面积为
因为ΔABC的面积为6
∴AC=3
∵A(-2,0)
∴点C(-5,0)或(1,0)
(3)存在,理由:①如图:点C再A点左侧,
∵A(-2,0),B(0,4), ∴AB=,∵四边形ACDB为菱形,∴AC=AB=,∵ACBD, ∴AC=BD=AB=,∴D(-,4);
②如图:点C再A点右侧,
∵A(-2,0),B(0,4), ∴AB=,∵四边形ACDB为菱形,∴AC=AB=,∵ACBD, ∴AC=BD=AB=,∴D(,4);综上所述:D点的坐标为(-,4),(,4)
本题考查了一次函数的应用、菱形的性质以及三角形的面积问题,注意掌握数形结合思想和分类讨论的思想.
17、(1);(2)5种;(3)装运种脐橙车,种脐橙车,种脐橙车时,获利最大,最大利润为元.
【解析】
(1)利用“车辆数之和=20”这个等量关系进行列式即可;
(2)关系式为:装运每种脐橙的车辆数≥4;
(3)总利润为:装运A种脐橙的车辆数×6×1200+装运B种脐橙的车辆数×5×1600+装运C种脐橙的车辆数×4×1000,然后按x的取值来判定.
【详解】
解:(1)根据题意,装运种脐橙的车辆数为,装运种脐橙的车辆数为,那么装运种脐橙的车辆数为,
则有:,即:
(2)由知,装运三种脐橙的车辆数分别为
由题意得:
解得,
因为为整数,
所以的值为,所以安排方案共有种.
(3)
的值随的增大而减小
要使利润最大,则,
故选方案为:装运种脐橙车,种脐橙车,种脐橙车.
(元)
答:当装运种脐橙车,种脐橙车,种脐橙车时,获利最大,最大利润为元.
故答案为:(1);(2)5种;(3)装运种脐橙车,种脐橙车,种脐橙车时,获利最大,最大利润为元.
解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系.确定x的范围,得到装在的几种方案是解决本题的关键.
18、见解析(2)
【解析】
(1)根据三角形中位线定理和全等三角形的判定证明即可;
(2)利用正方形的性质和矩形的面积公式解答即可.
【详解】
(1)连接EF,∵点F,G,H分别是BC,BE,CE的中点,
∴FH∥BE,FH=BE,FH=BG,
∴∠CFH=∠CBG,
∵BF=CF,
∴△BGF≌△FHC,
(2)当四边形EGFH是正方形时,连接GH,可得:EF⊥GH且EF=GH,
∵在△BEC中,点G,H分别是BE,CE的中点,
∴ 且GH∥BC,
∴EF⊥BC,
∵AD∥BC,AB⊥BC,
∴AB=EF=GH=a,
∴矩形ABCD的面积=
此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、9;9
【解析】
【分析】根据中位数和众数定义可以分析出结果.
【详解】这组数据中9出现次数最多,故众数是9;按顺序最中间是9,所以中位数是9.
故答案为9;9
【点睛】本题考核知识点:众数,中位数.解题关键点:理解众数,中位数的定义.
20、
【解析】
直接根据“上加下减”的平移规律求解即可.
【详解】
将直线向下平移4个单位长度,所得直线的解析式为,即.
故答案为:.
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.
21、2.4
【解析】
连接BD,可证EF=BD,即将求EF最小值转化为求BD的最小值,根据“垂线段最短”可知时,BD取最小值,依据直角三角形面积求出BD即可.
【详解】
解:连接BD
四边形BEDF是矩形
当时,BD取最小值,
在中,,,根据勾股定理得AC=5,
所以EF的最小值等于BD的最小值为2.4.
故答案为2.4
本题主要考查了利用“垂线段最短”求线段的最小值,准确作出辅助线将求EF最小值转化为求BD最小值是解题的关键.求线段的最小值常用的理论依据为“两点之间线段最短”、“垂线段最短”.
22、1 6 2
【解析】
根据图1和图2得当t=1时,点P到达A处,即AB=1;当S=12时,点P到达点D处,即可求解.
【详解】
①当t=1时,点P到达A处,即AB=1.
故答案是:1;
②过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,
∵AC=AD,
∴DE=CE=,
∴CD=6,
故答案是:6;
③当S=12时,点P到达点D处,则S=CD•BC=(2AB)•BC=1×BC=12,
则BC=2,
故答案是:2.
考查了动点问题的函数图象,注意分类讨论的思想、函数的知识和等腰三角形等的综合利用,具有很强的综合性.
23、5
【解析】
根据勾股定理,可得答案.
【详解】
解: PO==5,
故选: C.
本题考查了点的坐标,利用勾股定理是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)n的表达式为;(2)S△ABC的面积是4.5;(3)P点坐标为(6,3).
【解析】
(1)把C点坐标代入直线m,可求得t,再由待定系数法可求得直线n的解析式;
(2)可先求得B点坐标,则可求得AB,再由C点坐标可求得△ABC的面积;
(3)由面积相等可知点P到x轴的距离和点C到y轴的距离相等,可求得P点纵坐标,代入直线n的解析式可求得P点坐标.
【详解】
(1)∵直线m过C点,
∴-3=-3t+3,解得t=2,
∴C(2,-3),
设直线n的解析式为y=kx+b,
把A、C两点坐标代入可得
,
解得,
∴直线n的解析式为y=1.5x-6;
(2)在y=-3x+3中,令y=0,可得0=-3x+3,解得x=1,
∴B(1,0),且A(4,0),
∴AB=4-1=3,且C点到x轴的距离h=3,
∴S△ABC=
(3)由点P在直线n上,故可设P点坐标为(x,1.5x-6),
∵S△ABC=S△ABP,
∴P到x轴的距离=3,
∵C、P两点不重合,
∴P点的纵坐标为3,
∴1.5x-6=3,解得x=6,
∴P点坐标为(6,3).
本题主要考查一次函数的应用,掌握两直线的交点坐标满足每条直线的解析式是解题的关键.
25、1,2,3,4,5,6
【解析】
根据不等式的性质依次求出各不等式的解集,再求出公共解集,即可求解.
【详解】
解
解不等式①得x≥1,
解不等式②得x<
故不等式组的解集为1≤x<
故整数解为1,2,3,4,5,6
此题主要考查不等式的解集,解题的关键是熟知不等式的性质.
26、 (1)v=;(2)平均每小时至少要卸货20吨.
【解析】
(1)直接利用vt=100进而得出答案;
(2)直接利用要求不超过5小时卸完船上的这批货物,进而得出答案.
【详解】
(1)由题意可得:100=vt,
则;
(2)∵不超过5小时卸完船上的这批货物,
∴t≤5,
则v≥=20,
答:平均每小时至少要卸货20吨.
考查了反比例函数的应用,正确得出函数关系式是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
脐橙品种
每辆汽车运载量(吨)
每吨脐橙获得(元)
相关试卷
这是一份山东省泰安市泰山景区大津口中学2024-2025学年九年级上学期第一次月考数学试题,共6页。试卷主要包含了 的值为,在△ABC中,若,则的度数为,点在反比例函数,函数y=﹣ax+a与等内容,欢迎下载使用。
这是一份山东省泰安市泰山景区大津口中学2024-2025学年九年级上学期第一次月考数学试题,共10页。试卷主要包含了 的值为,在△ABC中,若,则的度数为,点在反比例函数,函数y=﹣ax+a与等内容,欢迎下载使用。
这是一份山东省泰安市泰山区大津口中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案,共7页。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)