开学活动
搜索
    上传资料 赚现金

    山东省泰安市高新区2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】

    山东省泰安市高新区2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】第1页
    山东省泰安市高新区2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】第2页
    山东省泰安市高新区2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省泰安市高新区2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】

    展开

    这是一份山东省泰安市高新区2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在矩形ABED中,AB=4,BE=EC=2,动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是( )
    A.B.
    C.D.
    2、(4分)如图在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为( )
    A.26cmB.24cmC.20cmD.18cm
    3、(4分)=( )
    A.4B.2C.﹣2D.±2
    4、(4分)如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=( )
    A.54°B.60°C.66°D.72°
    5、(4分)下列条件中能构成直角三角形的是( )
    A.a=3,b=4,c=6B.a=5,b=6,c=7
    C.a=6,b=8,c=9D.a=5,b=12,c=13
    6、(4分)小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )
    A.3个B.4个C.5个D.无数个
    7、(4分)数据用小数表示为( )
    A.B.C.D.
    8、(4分)如图,△ABC是面积为27cm2的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为( )
    A.9cm2B.8cm2C.6cm2D.12 cm2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在矩形ABCD中,AC为对角线,点E为BC上一点,连接AE,若∠CAD=2∠BAE,CD=CE=9,则AE的长为_____________.
    10、(4分)将函数y=的图象向上平移_____个单位后,所得图象经过点(0,1).
    11、(4分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.
    12、(4分)如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为__.
    13、(4分)在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是___分.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.
    (1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;
    (2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.
    15、(8分)某人购进一批琼中绿橙到市场上零售,已知卖出的绿橙数量x(千克)与售价y(元)的关系如下表:
    (1)写出售价y(元)与绿橙数量x(千克)之间的函数关系式;
    (2)这个人若卖出50千克的绿橙,售价为多少元?
    16、(8分)如图,于点,于点,与相交于点,连接线段,恰好平分.
    求证:.
    17、(10分)已知一次函数的图象过点,.
    (1)求此函数的表达式;
    (2)若点在此函数的图象上,求的值.
    18、(10分)在课外活动中,我们要研究一种四边形--筝形的性质.
    定义:两组邻边分别相等的四边形是筝形(如图1).
    小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.
    下面是小聪的探究过程,请补充完整:
    (1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 ;
    (2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;
    (3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)将直线y=﹣2x﹣2向上平移5个单位后,得到的直线为_____.
    20、(4分)如图,在▱ABCD中,M为边CD上一点,将△ADM沿AM折叠至△AD′M处,AD′与CM交于点N.若∠B=55°,∠DAM=24°,则∠NMD′的大小为___度.
    21、(4分)点P是菱形ABCD的对角线AC上的一个动点,已知AB=1,∠ADC=120°, 点M,N分别是AB,BC边上的中点,则△MPN的周长最小值是______.
    22、(4分)如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=_____cm.
    23、(4分)如图,,是反比例函数图像上的两点,过点作轴,过点作轴,交点为,连接,.若的面积为2,则的面积为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在中,分别平分和,交于点,线段相交于点M.
    (1)求证:;
    (2)若,则的值是__________.
    25、(10分)如图,在中,点、是对角线上两点,且.
    (1)求证:四边形是平行四边形.
    (2)若.,且,求的面积.
    26、(12分)如图,在平面直角坐标系中,直线l1:分别与x轴、y轴交于点B、C,且与直线l2:交于点A.
    (1)求出点A的坐标
    (2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式
    (3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    分别求出点P在DE、AD、AB上运动时,S与t的函数关系式,继而根据函数图象的方向即可得出答案.
    【详解】
    解:根据题意得:
    当点P在ED上运动时,S=BC•PE=2t(0≤t≤4);
    当点P在DA上运动时,此时S=8(4<t<6);
    当点P在线段AB上运动时,S=BC(AB+AD+DE﹣t)=20﹣2t(6≤t≤10);
    结合选项所给的函数图象,可得D选项符合题意.
    故选:D.
    本题考查了动点问题的函数图象,解答该类问题也可以不把函数图象的解析式求出来,利用排除法进行解答.
    2、D
    【解析】
    根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.
    【详解】
    解:∵AC=4cm,若△ADC的周长为13cm,
    ∴AD+DC=13﹣4=9(cm).
    又∵四边形ABCD是平行四边形,
    ∴AB=CD,AD=BC,
    ∴平行四边形的周长为2(AB+BC)=18cm.
    故选D.
    3、B
    【解析】
    根据算术平方根,即可解答.
    【详解】
    ==2,
    故选B.
    本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.
    4、D
    【解析】
    过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.
    【详解】
    过F作FG∥AB∥CD,交BC于G;
    则四边形ABGF是平行四边形,所以AF=BG,
    即G是BC的中点;
    连接EG,在Rt△BEC中,EG是斜边上的中线,
    则BG=GE=FG=BC;
    ∵AE∥FG,
    ∴∠EFG=∠AEF=∠FEG=54°,
    ∴∠AEG=∠AEF+∠FEG=108°,
    ∴∠B=∠BEG=180°-108°=72°.
    故选D.
    此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.
    5、D
    【解析】
    由勾股定理的逆定理,判定的是直角三角形.
    【详解】
    A. 32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
    B. 52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
    C. 62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
    D. 52+122=132,故符合勾股定理的逆定理,能组成直角三角形,故正确.
    故选D.
    本题考查勾股定理的逆定理,如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.
    6、C
    【解析】
    结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.
    【详解】
    因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,
    观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,
    故选C.
    本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.
    7、B
    【解析】
    由题意根据把还原成原数,就是把小数点向左移动4位进行分析即可.
    【详解】
    解:=.
    故选:B.
    本题考查写出用科学记数法表示的原数.将科学记数法a×10-n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.
    8、A
    【解析】
    先证明△AEH∽△AFG∽△ABC,再根据相似三角形的面积比是相似比的平方,即可得出结果.
    【详解】
    解:∵是面积为的等边三角形

    ∵矩形平行于


    ∵被截成三等分
    ∴,


    ∴图中阴影部分的面积
    故选:A
    本题考查了相似三角形的判定和性质,正确理解题意并能灵活运用相关判定方法和性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,证明△ABE∽△ADM,根据相似三角形的性质可得AB:AD=BE:DM,证明△ADM≌△ANM,根据全等三角形的性质可得 AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC= 9+m,MN=n,CM= 9-n,由此可得,即9n=m(9+m),根据勾股定理可得AC=,
    从而可得 CN= -(9+m),在Rt△CMN中,根据勾股定理则可得(9-n)2=n2+[-(9+m)]2,继而由9n=m(9+m),可得- 2m(9+m)=2(9+m)2-2(9+m),化简得=9+2m,两边同时平方后整理得m2+6m-27=0,求得m=3或m=-9(舍去),再根据勾股定理即可求得答案.
    【详解】
    如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,
    则∠CAD=2∠DAM=2∠NAM,∠ANM=∠MNC=90°,
    ∵∠CAD=2∠BAE,
    ∴∠BAE=∠DAM,
    ∵四边形ABCD是矩形,
    ∴AB=CD=9,∠B=∠D=90°,AD=BC,
    ∴△ABE∽△ADM,
    ∴AB:AD=BE:DM,
    又∵AM=AM,
    ∴△ADM≌△ANM,
    ∴AN=AD,MN=DM,
    设BE=m,DM=n,则AN=AD=BC=CE+BE=9+m,MN=n,CM=CD-DM=9-n,
    ∵AB:AD=BE:DM,
    ∴,即9n=m(9+m),
    ∵∠B=90°,∴AC=,
    ∴CN=AC-AN=-(9+m),
    在Rt△CMN中,CM2=CN2+MN2,
    即(9-n)2=n2+[-(9+m)]2,
    ∴81-18n+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,
    又∵9n=m(9+m),
    ∴81- 2m(9+m)+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,
    即- 2m(9+m)=2(9+m)2-2(9+m),
    ∴=9+2m,
    ∴92+(9+m)2=(9+2m)2,
    即m2+6m-27=0,
    解得m=3或m=-9(舍去),
    ∴AE=,
    故答案为:.

    本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识,准确计算是解题的关键.
    10、3
    【解析】
    根据一次函数平移“上加下减”,即可求出.
    【详解】
    解:函数y=的图象与y轴的交点坐标是(0,-2),
    图象需要向上平移1-(-2)=3个单位才能经过点(0,1).
    故答案为:3.
    本题考查了一次函数的平移,将直线的平移转化成点的平移是解题的关键.
    11、
    【解析】
    设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.
    【详解】
    设A坐标为(x,y),
    ∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,
    ∴x+5=0+3,y+0=0-3,
    解得:x=-2,y=-3,即A(-2,-3),
    设过点A的反比例解析式为y=,
    把A(-2,-3)代入得:k=6,
    则过点A的反比例解析式为y=,
    故答案为y=.
    此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.
    12、答案为:y=﹣2x+3.
    【解析】【分析】设直线l的函数解析式为y=kx+b,先由平行关系求k,再根据交点求出b.
    【详解】设直线l的函数解析式为y=kx+b,
    因为,直线l与直线y=﹣2x+1平行,
    所以,y=﹣2x+b,
    因为,与直线y=﹣x+2的交点纵坐标为1,
    所以,1=﹣x+2,x=1
    所以,把(1,1)代入y=-2x+b,解得b=3.
    所以,直线l的函数解析式为:y=﹣2x+3.
    故答案为:y=﹣2x+3.
    【点睛】本题考核知识点:一次函数解析式. 解题关键点:熟记一次函数的性质.
    13、1
    【解析】
    根据图象写出这组数据,再根据一组数据中出现次数最多的数据叫做众数求解.
    【详解】
    解:由图可得,
    这组数据分别是:24,24,1,1,1,30,
    ∵1出现的次数最多,
    ∴这组数据的众数是1.
    故答案为:1.
    本题考查折线统计图和众数,解答本题的关键是明确众数的定义,利用数形结合的思想解答.
    三、解答题(本大题共5个小题,共48分)
    14、(1)当选择方案①时,y=144x+2800;当选择方案②时,y=204x+2380;(2)故当0<x<7时,选择方案②;当x=7时,两种方案费用一样;当x>7时,选择方案①
    【解析】
    (1)根据题意分别列出两种方案的收费方案的函数关系式;
    (2)由(1)找到临界点分类讨论即可.
    【详解】
    (1)当选择方案①时,y=350×8+0.6×240x=144x+2800
    当选择方案②时,y=(350×8+240)x×0.85=204x+2380
    (2)当方案①费用高于方案②时
    144x+2800>204x+2380
    解得x<7
    当方案①费用等于方案②时
    144x+2800=204x+2380
    解得x=7
    当方案①费用低于方案②时
    144x+2800<204x+2380
    解得x>7
    故当0<x<7时,选择方案②
    当x=7时,两种方案费用一样.
    当x>7时,选择方案①
    本题是一次函数实际应用问题,考查一次函数性质以及一元一次方程、不等式.解答关键是分类讨论.
    15、 (1)y=2.1x;(2)这个人若卖出50千克的绿橙,售价为1元.
    【解析】
    (1)根据表中所给信息,判断出y与x的数量关系,列出函数关系式即可;
    (2)把x=50代入函数关系式即可.
    【详解】
    (1)设售价为y(元)与绿橙数量x(千克)之间的函数关系式为y=kx+b,由已知得,

    解得k=2.1,b=0;
    ∴y与x之间的函数关系式为y=2.1x;
    (2)当x=50时,
    y=2.1×50=1.
    答:这个人若卖出50千克的绿橙,售价为1元.
    本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,并且可以求在x一定时的函数值.
    16、见解析.
    【解析】
    由角平分线的性质得出OE=OD,证得△BOE≌△COD,即可得出结论.
    【详解】
    ∵于点,于点,恰好平分
    ∴,



    本题考查了角平分线的性质、全等三角形的判定与性质等知识,熟练掌握角平分线的性质、证明三角形全等是解题的关键.
    17、(1)y=x+3;(2)a=4;
    【解析】
    (1)把A、B两点坐标代入y=kx+b中得到关于k、b的方程组,然后解方程组求出k、b即可得到一次函数解析式;
    (2)根据一次函数图象上点的坐标特征,把(a,6)代入一次函数解析式中可求出a的值;
    【详解】
    (1)把A(0,3),B(-4,0)代入y=kx+b得 ,解得 .
    所以一次函数解析式为y=x+3;
    (2)把(a,6)代入y=x+3得a+3=6,解得a=4;
    此题考查待定系数法求一次函数解析式,解题关键在于先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
    18、(1)菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.证明见解析;(3)4.
    【解析】
    (1)根据筝形的定义解答即可;
    (2)根据全等三角形的判定和性质证明;
    (3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.
    【详解】
    (1)∵菱形的四条边相等,
    ∴菱形是筝形,
    故答案为:菱形;
    (2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.
    已知:四边形ABCD是筝形,
    求证:∠B=∠D,
    证明:如图1,连接AC,
    在△ABC和△ADC中,

    ∴△ABC≌△ADC,
    ∴∠B=∠D;
    (3)如图2,连接AC,作CE⊥AB交AB的延长线于E,
    ∵∠ABC=120°,
    ∴∠EBC=60°,又BC=2,
    ∴CE=BC×sin∠EBC=,
    ∴S△ABC=×AB×CE=2,
    ∵△ABC≌△ADC,
    ∴筝形ABCD的面积=2S△ABC=4.
    本题考查的是筝形的定义和性质、菱形的性质、全等三角形的判定和性质,正确理解筝形的性质、熟记锐角三角函数的定义是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=﹣2x+3
    【解析】
    一次函数图像,即直线平移的原则是:上加下减,左加右减,据此即可求解.
    【详解】
    将直线y=﹣2x﹣2向上平移5个单位,得到直线y=﹣2x﹣2+5,即y=﹣2x+3;
    故答案为:y=﹣2x+3;
    该题主要考查了一次函数图像,即直线平移的方法:上加下减,左加右减,准确掌握平移的原则即可解题.
    20、22.
    【解析】
    由平行四边形的性质得出∠D=∠B=55°,由折叠的性质得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,由三角形的外角性质求出∠AMN=79°,与三角形内角和定理求出∠AMD'=101°,即可得出∠NMD'的大小.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠D=∠B=55°,
    由折叠的性质得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,
    ∴∠AMN=∠D+∠DAM=55°+24°=79°,∠AMD'=180°-∠MAD'-∠D'=101°,
    ∴∠NMD'=101°-79°=22°;
    故答案为:22.
    本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AMN和∠AMD'是解决问题的关键.
    21、.
    【解析】
    先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1,再求出MN的长即可求出答案.
    【详解】
    如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.
    ∵菱形ABCD关于AC对称,M是AB边上的中点,
    ∴M′是AD的中点,
    又∵N是BC边上的中点,
    ∴AM′∥BN,AM′=BN,
    ∴四边形ABNM′是平行四边形,
    ∴M′N=AB=1,
    ∴MP+NP=M′N=1,即MP+NP的最小值为1,
    连结MN,过点B作BE⊥MN,垂足为点E,
    ∴ME=MN,
    在Rt△MBE中,,BM=
    ∴ME=,
    ∴MN=
    ∴△MPN的周长最小值是+1.
    故答案为+1.
    本题考查的是轴对称-最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.
    22、1
    【解析】
    根据题意先利用垂直平分线的性质得出AF=EF,∠AFG=∠EFD=90°,DA=DE,再证明△DEF≌△GAF(ASA),从而得DE=AG,然后利用一组对边平行且相等的四边形为平行四边形证明四边形DAGE为平行四边形,之后利用一组邻边相等的四边形为菱形证明DAGE为菱形,从而可得AG=AB,最后将已知线段长代入即可得出答案.
    【详解】
    解:∵AE的垂直平分线为DG
    ∴AF=EF,∠AFG=∠EFD=90°,DA=DE
    ∵四边形ABCD是平行四边形
    ∴DC∥AB,AD∥BC,DC=AB,
    ∴∠DEA=∠BAE
    ∵AE平分∠BAD交CD于点E
    ∴∠DAE=∠BAE
    ∴在△DEF和△GAF中
    ∴△DEF≌△GAF(ASA)
    ∴DE=AG
    又∵DE∥AG
    ∴四边形DAGE为平行四边形
    又∵DA=DE
    ∴四边形DAGE为菱形.
    ∴AG=AD
    ∵AD=4cm
    ∴AG=4cm
    ∵BG=1cm
    ∴AB=AG+BG=4+1=1(cm)
    故答案为:1.
    本题考查平行四边形的判定与性质及菱形的判定与性质,熟练掌握相关性质及定理是解题的关键.
    23、1
    【解析】
    设A(m,),B(n,),根据题意可得AP=,且A点到y轴的距离为m,依据已知△AOP的面积为2,得到m和n的关系式n=3m,计算△ABP面积=AP×BP,即可得到结果.
    【详解】
    解:设A(m,),B(n,),
    根据题意可得AP=,且A点到y轴的距离为m,
    则AP×m=()×m=2,整理得,
    所以n=3m,B点坐标可以表示为(3m,)
    △ABP面积=AP×BP=()×(3m−m)=1.
    故答案为1.
    本题主要考查了反比例函数图象上点的坐标特征,解决此类型问题,一般设某个点坐标为(x,),然后用横纵坐标的绝对值表示线段的长度.
    二、解答题(本大题共3个小题,共30分)
    24、(1)略;(2);
    【解析】
    (1)想办法证明∠BAE+∠ABF=10°,即可推出∠AMB=10°即AE⊥BF;
    (2)证明DE=AD,CF=BC,再利用平行四边形的性质AD=BC,证出DE=CF,得出DF=CE,由已知得出BC=AD=5EF,DE=5EF,求出DF=CE=4EF,得出AB=CD=1EF,即可得出结果.
    【详解】
    (1)证明:∵在平行四边形ABCD中,AD∥BC,
    ∴∠DAB+∠ABC=180°,
    ∵AE、BF分别平分∠DAB和∠ABC,
    ∴∠DAB=2∠BAE,∠ABC=2∠ABF,
    ∴2∠BAE+2∠ABF=180°,即∠BAE+∠ABF=10°,
    ∴∠AMB=10°,
    ∴AE⊥BF;
    (2)解:∵在平行四边形ABCD中,CD∥AB,
    ∴∠DEA=∠EAB,
    又∵AE平分∠DAB,
    ∴∠DAE=∠EAB,
    ∴∠DEA=∠DAE,
    ∴DE=AD,同理可得,CF=BC,
    又∵在平行四边形ABCD中,AD=BC,
    ∴DE=CF,
    ∴DF=CE,
    ∵EF=AD,
    ∴BC=AD=5EF,
    ∴DE=5EF,
    ∴DF=CE=4EF,
    ∴AB=CD=1EF,
    ∴BC:AB=5:1;
    故答案为5:1.
    本题考查平行四边形的性质、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    25、(1)证明见详解;(2)1
    【解析】
    (1)先连接BD,交AC于O,由于四边形ABCD是平行四边形,易知OB=OD,OA=OC,而AE=CF,根据等式性质易得OE=OF,即可得出结论.
    (2)由AE=CF,OE=OF,EF=2AE=2,得出AE=CF=OE=OF=1,AC=4,CE=3,证出△BCE是等腰直角三角形,得出BE=CE=3,得出▱ABCD的面积=2△ABC的面积=2××AC×BE,即可得出结果.
    【详解】
    (1)证明:连接BD,交AC于O,如图所示:
    ∵四边形ABCD是平行四边形,
    ∴OB=OD,OA=OC,
    ∵AE=CF,
    ∴OA-AE=OC-CF,
    ∴OE=OF,
    ∴四边形BFDE是平行四边形;
    (2)解:∵AE=CF,OE=OF,EF=2AE=2,
    ∴AE=CF=OE=OF=1,
    ∴AC=4,CE=3,
    ∵∠ACB=45°,BE⊥AC,
    ∴△BCE是等腰直角三角形,
    ∴BE=CE=3,
    ∵四边形ABCD是平行四边形,
    ∴▱ABCD的面积=2△ABC的面积=2××AC×BE=4×3=1.
    本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、三角形面积等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.
    26、(1)A(6,3);(2)y=﹣x+6;(3)存在满足条件的点的P,其坐标为(6,0)或(3,﹣3)或(,+6).
    【解析】
    (1)把x=0,y=0分别代入直线L1,即可求出y和x的值,即得到B、C的坐标,解由直线BC和直线OA的方程组即可求出A的坐标;(2)设D(x,x),代入面积公式即可求出x,即得到D的坐标,设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入即可求出直线CD的函数表达式;(3)存在点Q,使以O、C、P、Q为顶点的四边形是菱形,根据菱形的性质能写出Q的坐标.
    【详解】
    (1)解方程组,得, ∴A(6,3);
    (2)设D(x, x),
    ∵△COD的面积为12,∴×6×x=12,
    解得:x=4,∴D(4,2),
    设直线CD的函数表达式是y=kx+b,
    把C(0,6),D(4,2)代入得:,解得:,
    ∴直线CD解析式为y=﹣x+6;
    (3)在直线l1:y=﹣x+6中,当y=0时,x=12,
    ∴C(0,6)
    存在点P,使以O、C、P、Q为顶点的四边形是菱形,
    如图所示,分三种情况考虑:
    (i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时OP1=OC=6,即P1(6,0);
    (ii)当四边形OP2CQ2为菱形时,由C坐标为(0,6),得到P2纵坐标为3,
    把y=3代入直线直线CQ的解析式y=﹣x+6中,可得3=﹣x+6,解得x=3,此时P2(3,﹣3);
    (iii)当四边形OQ3P3C为菱形时,则有OQ3=OC=CP3=P3Q3=6,设P3(x,﹣x+6),
    ∴x2+(﹣x+6﹣6)2=62,解得x=3或x=﹣3(舍去),此时P3(3,﹣3+6);
    综上可知存在满足条件的点的P,其坐标为(6,0)或(3,﹣3)或(,+6).
    本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.
    题号





    总分
    得分
    批阅人
    数量x(千克)
    1
    2
    3
    4
    5

    售价y(元)
    2+0.1
    4+0.2
    6+0.3
    8+0.4
    10+0.5

    相关试卷

    山东省德州市临邑县2024-2025学年数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份山东省德州市临邑县2024-2025学年数学九年级第一学期开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省苏州市高新区2024-2025学年数学九上开学学业水平测试模拟试题【含答案】:

    这是一份江苏省苏州市高新区2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省济南市高新区数学九年级第一学期开学学业水平测试试题【含答案】:

    这是一份2025届山东省济南市高新区数学九年级第一学期开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map