山东省枣庄市枣庄市第四十一中学2024年九年级数学第一学期开学预测试题【含答案】
展开
这是一份山东省枣庄市枣庄市第四十一中学2024年九年级数学第一学期开学预测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,则下列不等式一定成立的是( )
A.B.
C.D.
2、(4分)某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是( )
A.直接观察B.查阅文献资料C.互联网查询D.测量
3、(4分)如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF=2,则菱形ABCD的边长为( )
A. B.2 C.2 D.4
4、(4分)某公司承担了制作600个广州亚运会道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了10个,因此提前5天完成任务,根据题意,下列方程正确的是( )
A.B.
C.D.
5、(4分)用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是( )
A.4 B.5 C.6 D.8
6、(4分)对于一次函数,下列结论①随的增大而减小;②函数的图象不经过第三象限;③函数的图象向下平移4个单位得;④函数的图象与轴的交点坐标是.其中,错误的有( )
A.1个B.2个C.3个D.4个
7、(4分)如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=5,则图中阴影部分的面积为( )
A.6B.C.D.25
8、(4分)如图,在中,,则的长为( )
A.2B.4C.6D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某市出租车的收费标准是:千米以内(包括千米)收费元,超过千米,每增加千米加收元,则当路程是(千米)()时,车费(元)与路程(千米)之间的关系式(需化简)为:________.
10、(4分)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是 度.
11、(4分)如图,⊙O 是△ABC 的外接圆,已知∠ABO=30º,则∠ACB 的为_____º.
12、(4分)方程组的解是
13、(4分)在Rt△ABC中,∠B=90°,∠C=30°,AB=2,则BC的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)用适当的方法解方程
(1)
(2)
15、(8分)解不等式组并将解集在数轴上表示出来.
16、(8分)已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=1.
(1)求证:此方程总有两个实数根;
(2)若此方程有一个根大于1且小于1,求k的取值范围.
17、(10分)为进一步改善民生,增强广大人民群众的幸福感,自2016年以来,我县加大城市公园的建设,2016年县政府投入城市公园建设经费约2亿元到2018年投入城市公园建设经费约2.88亿元,假设这两年投入城市公园建设经费的年平均增长率相同.
(1)求这两年我县投入城市公园建设经费的年平均增长率;
(2)若我县城市公园建设经费的投入还将保持相同的年平均增长率,请你预算2019年我县城市公园建设经费约为多少亿元?
18、(10分)(1)解不等式:
(2)解方程:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若n边形的每个内角都是,则________.
20、(4分)已知是一元二次方程的一根,则该方程的另一个根为_________.
21、(4分)小天家、小亮家、学校依次在同一条笔直的公路旁(各自到公路的距离忽略不计),每天早上7点整小天都会从家出发以每分钟60米的速度走到距他家600米的小亮家,然后两人以小天同样的速度准时在7:30到校早读.某日早上7点过,小亮在家等小天的时候突然想起今天轮到自己值日扫地了,所以就以每分钟60米的速度先向学校走去,后面打算再和小天解释,小天来到小亮家一看小亮不在家,立刻想到小亮今天是值日生(停留及思考时间忽略不计),于是他就以每分钟100米的速度去追小亮,两人之间的距离y(米)及小亮出发的时间x(分)之间的函数关系如下图所示.请问当小天追上小亮时离学校还有_____米.
22、(4分)在▱ABCD中,若∠A+∠C=270˚,则∠B=_____.
23、(4分)在四边形中,给出下列条件:① ② ③ ④
其中能判定四边形是平行四边形的组合是________或 ________或_________或_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:在中,对角线、交于点,过点的直线交于点,交于点.
求证:,.
25、(10分)列分式方程解应用题
“六一”前夕,某商场用7200元购进某款电动玩具销售.由于销售良好,过了一段时间,商场又用14800元购进这款玩具,所购数量是第一次购进数量的2倍,但每件价格比第一次购进贵了2元.
(1)求该商场第一次购进这款玩具多少件?
(2)设该商场两次购进的玩具按相同的标价销售,最后剩下的80件玩具按标价的六折再销售,若两次购进的玩具全部售完,且使利润不低于4800元,则每件玩具的标价至少是多少元?
26、(12分)已知:等腰三角形的一个角,求其余两角与的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据不等式的性质对选项进行逐一判断即可得到答案.
【详解】
解:A、因为, 不知道是正负数或者是0,不能得到,则A选项的不等式不成立;
B、因为,则,所以B选项的不等式不成立;
C、因为,则,所以C选项的不等式成立;
D、因为,则,所以D选项的不等式不成立.
故选C.
本题考查了不等式的性质,解题的关键是知道不等式两边同加上(或减去)一个数,不等号方向不变;不等式两边同乘以(或除以)一个正数,不等号方向不变;不等式两边同乘以(或除以)一个负数,不等号方向改变.
2、D
【解析】
本题考查的是调查收集数据的过程与方法
根据八某校年级(3)班体训队员的身高即可判断获得这组数据的方法.
由题意得,获得这组数据方法是测量,故选D.
思路拓展:解答本题的关键是掌握好调查收集数据的过程与方法.
3、A
【解析】
连接AC、BD交于O,根据菱形的性质得到AC⊥BD,OA=OC,OB=OD,根据三角形中位线定理、矩形的判定定理得到四边形EFGH是矩形,根据勾股定理计算即可.
【详解】
连接AC、BD交于O,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=OC,OB=OD,
∵点E、F、G、H分别是边AB、BC、CD和DA的中点,
∴EF=AC,EH=BD, EF∥AC,EH∥BD,
∴四边形EFGH是平行四边形,EH⊥EF,
∴四边形EFGH是矩形,
∵EH=2EF=2,
∴OB=2OA=2,
∴AB=.
故选:A.
考查的是中点四边形,掌握菱形的性质、三角形中位线定理是解题的关键.
4、A
【解析】
关键描述语是:实际平均每天比原计划多制作了10个,根据等量关系列式.
【详解】
解:设原计划x天完成,根据题意可得:,
故选:A.
此题考查分式方程的应用,涉及的公式:工作效率=工作量÷工作时间,解题时找到等量关系是列式的关键
5、A
【解析】正八边形的每个内角为:180°-360°÷8=135°,
两个正八边形在一个顶点处的内角和为:2×135°=270°,
那么另一个多边形的内角度数为:360°-270°=90°,
∵正方形的每个内角为90°,
∴另一个是正方形.
∴第三块木板的边数是4.
故选A.
6、A
【解析】
根据一次函数的性质对①②进行判断;根据一次函数的几何变换对③进行判断.根据一次函数图象上点的坐标特征对④进行判断;
【详解】
①k=−2,函数值随自变量的增大而减小,正确;
②k=−2,b=4,函数的图象经过第一、二、四象限,不经过第三象限,正确;
③函数的图象向下平移4个单位长度得y=−2x的图象,正确;
④函数的图象与y轴的交点坐标是(0,4),故错误;
故选:A.
本题考查了一次函数的性质:当k>0,y随x的增大而增大,函数从左到右上升;当k<0,y随x的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.
7、D
【解析】
分析:先用直角三角形的边长表示出阴影部分的面积,再根据勾股定理可得:AB2=AC2+BC2,进而可将阴影部分的面积求出.
详解:S阴影=AC2+BC2+AB2=(AB2+AC2+BC2),
∵AB2=AC2+BC2=1,
∴AB2+AC2+BC2=50,
∴S阴影=×50=1.
故选D.
点睛:本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.
8、B
【解析】
由平行四边形的对角线互相平分,可得AO的长度.
【详解】
在中,,
∴AO=
故答案为B
本题考查了平行四边形对角线互相平分的性质,利用该性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据题意可以写出相应的函数关系式,本题得以解决.
【详解】
由题意可得,
当x>3时,
y=5+(x-3)×1.2=1.2x+1.1,
故答案为:y=1.2x+1.1.
本题考查一次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.
10、144
【解析】
连接OE,
∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上,
∴点E,A,B,C共圆,
∵∠ACE=3°×24=72°,∴∠AOE=2∠ACE=144°,
∴点E在量角器上对应的读数是:144°,
故答案为144.
11、60°
【解析】
首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.
【详解】
解:△AOB中,OA=OB,∠ABO=30°;
∴∠AOB=180°-2∠ABO=120°;
∴∠ACB=∠AOB=60°.
故选A.
本题考查圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.
12、
【解析】
试题考查知识点:二元一次方程组的解法
思路分析:此题用加减法更好
具体解答过程:
对于,
两个方程相加,得:
3x=6即x=2
把x=2代入到2x-y=5中,得:
y=-1
∴原方程组的解是:
试题点评:
13、
【解析】
由在直角三角形中,30°角所对的边是斜边的一半得AC=2AB,再用运用勾股定理,易得BC的值.或直接用三角函数的定义计算.
【详解】
解:∵∠B=90°,∠C=30°,AB=2,
∴AC=2AB=4,
由勾股定理得:
故答案为:.
本题考查了解直角三角形,要熟练掌握好边角之间的关系、勾股定理及三角函数的定义.
三、解答题(本大题共5个小题,共48分)
14、见详解.
【解析】
(1)把x+1看成一个整体,利用直接开平方法求解即可.
(2)先把它化成一般式,再利用公式法求解即可.
【详解】
解:(1)
X+1=
X=-1
(2)
∵a=2,b=-5,c=-1.
∴=b2-4ac=(-5)2-42(-1)=25+8=33>0.
∴x===.
本题考查了一元二次方程 的解法,灵活运用一元二次方程的
解法是解题的关键.
15、.
【解析】
试题分析:首先分别求出不等式组中两个不等式的解,然后在数轴上表示出来,得出不等式组的解.
试题解析:由①,得x>-3, 由②,得x≤1,
解集在数轴上表示为:
所以原不等式的解集为:-3<x≤1.
考点:解不等式组
16、(3)证明见解析;(2)3<k<2.
【解析】
(3)根据方程的系数结合根的判别式,求得判别式恒成立,因此得证;
(2)利用求根公式求根,根据有一个跟大于3且小于3,列出关于的不等式组,解之即可.
【详解】
(3)证明:△=b2-4ac=[-(k+3)]2-4×(2k-2)=k2-6k+9=(k-3)2,
∵(k-3)2≥3,即△≥3,
∴此方程总有两个实数根,
(2)解:
解得 x3=k-3,x2=2,
∵此方程有一个根大于3且小于3,
而x2>3,
∴3<x3<3,
即3<k-3<3.
∴3<k<2,
即k的取值范围为:3<k<2.
本题考查了根的判别式,解题的关键是:(3)牢记“当时,方程总有两个实数根”,(2)正确找出不等量关系列不等式组.
17、(1)这两年我县投入城市公园建设经费的年平均增长率是0.2;(2)2019年我县城市公园建设经费约为3.456亿元.
【解析】
(1)设这两年我县投入城市公园建设经费的年平均增长率为x,根据题意,可以列出相应的一元二次方程,从而可求得年平均增长率;
(2)根据(1)中的结果可以计算出2019年我县城市公园建设经费约为多少亿元.
【详解】
(1)设这两年我县投入城市公园建设经费的年平均增长率为x,
2(1+x)2=2.88,
解得,x1=0.2,x2=﹣2.2(舍去),
答:这两年我县投入城市公园建设经费的年平均增长率是0.2;
(2)2.88(1+0.2)=3.456(亿元),
答:2019年我县城市公园建设经费约为3.456亿元.
本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n =b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.
18、(1);(2)
【解析】
(1)按照去分母、移项、合并同类项的步骤求解即可;
(2)按照去分母、系数化1的步骤求解即可.
【详解】
(1)去分母得
移项、合并得
解得
所以不等式的解集为
(2)去分母得
解得
经检验,是分式方程的解.
此题主要考查不等式以及分式方程的求解,熟练掌握,即可解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.
【详解】
解:∵n边形的每个内角都是120°,
∴每一个外角都是180°-120°=10°,
∵多边形外角和为310°,
∴多边形的边数为310÷10=1,
故答案为:1.
此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于310度.
20、-2
【解析】
由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.
【详解】
设方程的另一根为x1,
由根与系数的关系可得:1× x1=-2,
∴x1=-2.
故答案为:-2.
本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.
21、1
【解析】
根据题意和函数图象中的数据可以求得当小天追上小亮时离学校还有多少千米,本题得以解决.
【详解】
解:设小天从到小亮家到追上小亮用的时间为a分钟,由题意可得,
400+60a=100a,
解得,a=10,
即小天从到小亮家到追上小亮用的时间为10分钟,
∵小天7:00从家出发,到学校7:30,
∴小天从家到学校用的时间为:30分钟,
∴当小天追上小亮时离学校还有:60×30﹣600﹣100×10=1(米),
故答案为1.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
22、45°
【解析】
∵四边形ABCD是平行四边形,
∴∠A=∠C, ∠A+∠B=180º.
∵∠A+∠C=270°,
∴∠A=∠C=135º,
∴∠B=180º-135º=45º.
故答案为45º.
23、①③ ①④ ②④ ③④
【解析】
根据平行四边形的判定定理确定即可.
【详解】
解:如图,
①③:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
①④:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
②④:,, 四边形是平行四边形(一组对边平行且相等的四边形是平行四边形);
③④:, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
所以能判定四边形是平行四边形的组合是①③或①④或②④或③④.
故答案为:①③或①④或②④或③④.
本题考查了平行四边形的判定定理,一组对边平行且相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形,灵活选用条件及合适的判定定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、证明见解析.
【解析】
首先根据平行四边形的性质可得AB∥CD,OA=OC.根据平行线的性质可得∠EAO=∠FCO,进而可根据ASA定理证明△AEO≌△CFO,再根据全等三角形的性质可得OE=OF,AE=CF.
【详解】
证明:∵ 四边形ABCD为平行四边形,且对角线AC和BD交于点O,
∴,,
∴∠EAO=∠FCO,
∵∠AOE=∠COF,
∴ △AOE△COF(ASA),
∴ OE=OF,AE=CF.
本题考查了平行四边形的性质和全等三角形的判定,掌握全等三角形判定的方法是本题解题的关键.
25、(1)该商场第一次购进这款玩具100件;(2)每件玩具的标价至少是100元.
【解析】
(1)设该商场第一次购进这款玩具x件,则第二次购进这款玩具2x件,根据两次购得的单价的差值为2元列出分式方程;
(2)设每件玩具的标价为y元,根据利润不低于4800元列出不等式并解答.
【详解】
(1)设该商场第一次购进这款玩具x件,则第二次购进这款玩具2x件,
依题意得:
解得x=100
经检验x=100是原方程的解.
即该商场第一次购进这款玩具100件;
(2)设每件玩具的标价为y元,则
(100+200﹣80)y+80×60%y﹣7200﹣14800≥4800
解得y≥100
即每件玩具的标价至少是100元.
考查了分式方程的应用和一元一次不等式的应用.分析题意,找到合适的数量关系是解决问题的关键.
26、见解析.
【解析】
根据∠α的情况进行分类讨论求解即可.
【详解】
当时,由三角形内角和,是顶角,所以
当时,①是顶角,所以
②是底角,、或、
本题考查了等腰三角形的性质;等腰三角形中,已知没有明确具体名称时要分类讨论,这是解答本题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届山东省枣庄市第四十一中学九上数学开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省枣庄市中学区永安乡黄庄中学九年级数学第一学期开学联考模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省枣庄市枣庄市第四十一中学九年级数学第一学期开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。