开学活动
搜索
    上传资料 赚现金

    山西临汾霍州第一期第二次月考2024年数学九年级第一学期开学教学质量检测模拟试题【含答案】

    山西临汾霍州第一期第二次月考2024年数学九年级第一学期开学教学质量检测模拟试题【含答案】第1页
    山西临汾霍州第一期第二次月考2024年数学九年级第一学期开学教学质量检测模拟试题【含答案】第2页
    山西临汾霍州第一期第二次月考2024年数学九年级第一学期开学教学质量检测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西临汾霍州第一期第二次月考2024年数学九年级第一学期开学教学质量检测模拟试题【含答案】

    展开

    这是一份山西临汾霍州第一期第二次月考2024年数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列根式中不是最简二次根式的是( )
    A.B.C.D.
    2、(4分)下列事件为必然事件的是( )
    A.抛掷一枚硬币,落地后正面朝上
    B.篮球运动员投篮,投进篮筐;
    C.自然状态下水从高处流向低处;
    D.打开电视机,正在播放新闻.
    3、(4分)如图,丝带重叠的部分一定是( )
    A.菱形B.矩形C.正方形D.都有可能
    4、(4分)如图,AC=AD,BC=BD,则有( )
    A.AB垂直平分CDB.CD垂直平分AB
    C.AB与CD互相垂直平分D.CD平分∠ACB
    5、(4分)如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是( )
    A.40°B.50°C.60°D.70°
    6、(4分)已知x1,x2是方程的两个根,则的值为( )
    A.1B.-1C.2D.-2
    7、(4分)菱形和矩形一定都具有的性质是( )
    A.对角线相等B.对角线互相垂直
    C.对角线互相平分D.对角线互相平分且相等
    8、(4分)已知一次函数的图象经过点A,且函数值y随x的增大而减小,则点A的坐标可能是
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知边长为5cm的菱形,一条对角线长为6cm,则另一条对角线的长为________cm.
    10、(4分)如图,矩形中,,,在数轴上,若以点为圆心,对角线的长为半径作弧交数轴的正半轴于,则点的表示的数为_____.
    11、(4分)如图,在正方形ABCD中,P为对角线BD上一点,过P作PE⊥BC于E,PF⊥CD于F,若PE=1,PF=3,则AP=________ .
    12、(4分)如图,在正方形ABCD中,AB=8,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为_____.
    13、(4分)如图,在中,,,,将折叠,使点与点重合,得到折痕,则的周长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)疫情发生后,口罩成了人们生活的必需品.某药店销售A,B两种口罩,今年3月份的进价如下表:
    (1)已知B种口罩每包售价比A种口罩贵20元,用64元购买到A种口罩的数量和144元购买到B种口罩的数量相同,求A种口罩和B种口罩每包售价.
    (2)为满足不同顾客的需求,该药店准备4月份新增购进进价为每包10元的C种口罩,A种和B种口罩仍按需购进,进价与3月份相同,A种口罩的数量是B种口罩的5倍,共花费12000元,则该店至少可以购进三种口罩共多少包?
    15、(8分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成. 将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,. 若, 则正方形EFGH的面积为_______.
    16、(8分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF
    (1)补充完成图形;
    (2)若EF∥CD,求证:∠BDC=90°.
    17、(10分)解一元二次方程
    (1)2x+x-3=0 (2)
    18、(10分)阅读材料I:
    教材中我们学习了:若关于的一元二次方程的两根为,根据这一性质,我们可以求出己知方程关于的代数式的值.
    问题解决:
    (1)已知为方程的两根,则: __ _,__ _,那么_ (请你完成以上的填空)
    阅读材料:II
    已知,且.求的值.
    解:由可知
    又且,即
    是方程的两根.
    问题解决:
    (2)若且则 ;
    (3)已知且.求的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)分解因式:﹣2x2y+16xy﹣32y= .
    20、(4分)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若AC⊥A'B',则∠BAC的度数是__.
    21、(4分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为________________.
    22、(4分)方程=0的解是___.
    23、(4分)在菱形ABCD中,,,则对角线AC的长为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为了满足学生的物质需求,我市某中学到红旗超市准备购进甲、乙两种绿色袋装食品.其中甲、乙两种绿色袋装食品的进价和售价如下表:
    已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.
    (1)求的值;
    (2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于5200元,且不超5280元,问该红旗超市有几种进货方案?
    (3)在(2)的条件下,该红旗超市准备对甲种袋装食品进行优惠促销活动,决定对甲种袋装食品每袋优惠元出售,乙种袋装食品价格不变.那么该红旗超市要获得最大利润应如何进货?
    25、(10分)在平面直角坐标系中,原点为O,已知一次函数的图象过点A(0,5),点B(﹣1,4)和点P(m,n)
    (1)求这个一次函数的解析式;
    (2)当n=2时,求直线AB,直线OP与x轴围成的图形的面积;
    (3)当△OAP的面积等于△OAB的面积的2倍时,求n的值
    26、(12分)ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.
    (1)画出ABC关于原点O的中心对称图形A1B1C1,并写出点A1的坐标;
    (2)将ABC绕点C顺时针旋转90得到A2B2C,画出A2B2C,求在旋转过程中,线段CA所扫过的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.=2,故不是最简二次根式.故选C
    2、C
    【解析】
    根据事件发生的可能性大小判断相应事件的类型即可.
    【详解】
    解:A、抛掷一枚硬币,落地后正面朝上是随机事件;
    B、篮球运动员投篮,投进篮筺是随机事件;
    C、自然状态下水从高处流向低处是必然事件;
    D、打开电视机,正在播放新闻是随机事件;
    故选:C.
    本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    3、A
    【解析】
    首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.
    【详解】
    解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,
    所以AB∥CD,AD∥BC,AE=AF.
    ∴四边形ABCD是平行四边形.
    ∵S▱ABCD=BC•AE=CD•AF.
    ∴BC=CD,
    ∴四边形ABCD是菱形.
    故选:A.
    本题考查了平行四边形的判定和性质以及菱形的判定和性质,利用平行四边形的面积公式得到一组邻边相等是解题关键.
    4、A
    【解析】
    由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.
    【详解】
    解:∵AC=AD,BC=BD,
    ∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,
    ∴AB是CD的垂直平分线.
    即AB垂直平分CD.
    故选:A.
    此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.
    5、A
    【解析】
    作DG⊥AB于G,DH⊥BC于H,根据角平分线的性质得到DH=DG,证明Rt△DEG≌Rt△DFH,得到∠DEG=∠DFH,根据互为邻补角的性质得到答案.
    【详解】
    作DG⊥AB于G,DH⊥BC于H,
    ∵D是∠ABC平分线上一点,DG⊥AB,DH⊥BC,
    ∴DH=DG,
    在Rt△DEG和Rt△DFH中,

    ∴Rt△DEG≌Rt△DFH(HL),
    ∴∠DEG=∠DFH,又∠DEG+∠BED=180°,
    ∴∠BFD+∠BED=180°,
    ∴∠BFD的度数=180°-140°=40°,
    故选:A.
    此题考查角平分线的性质,全等三角形的判定与性质,邻补角的性质,解题关键在于作辅助线
    6、B
    【解析】
    直接利用根与系数的关系可求得答案.
    【详解】
    ∵x1、x2是方程的两个根,
    ∴x1+x2=-1,
    故选:B.
    此题考查根与系数的关系,掌握方程两根之和等于-是解题的关键.
    7、C
    【解析】
    菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.
    【详解】
    菱形和矩形一定都具有的性质是对角线互相平分.
    故选C.
    本题考查了菱形及矩形的性质,熟知菱形和矩形的对角线的性质是解决本题的关键.
    8、B
    【解析】
    先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.
    【详解】
    解:一次函数的函数值y随x的增大而减小,

    A、当,时,,解得,此点不符合题意,故本选项错误;
    B、当,时,,解得,此点符合题意,故本选项正确;
    C、当,时,,解得,此点不符合题意,故本选项错误;
    D、当,时,,解得,此点不符合题意,故本选项错误.
    故选:B.
    考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、8
    【解析】
    根据菱形的对角线互相垂直平分,得已知对角线的一半是1.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.
    【详解】
    解:在菱形ABCD中,AB=5,AC=6,
    因为对角线互相垂直平分,
    所以∠AOB=90°,AO=1,
    在RT△AOB中,BO=,
    ∴BD=2BO=8.
    注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.
    10、
    【解析】
    首先根据勾股定理计算出的长,进而得到的长,再根据点表示,可得点表示的数.
    【详解】
    解:由勾股定理得:,
    则,
    点表示,
    点表示,
    故答案为:.
    此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.
    11、
    【解析】
    延长FP、EP交AB、AD于M、N,由正方形的性质,得到∠PBE=∠PDF=45°,再由等腰三角形的性质及正方形的性质得到BE=PE=PM=1,PN=FD=FP=3,由勾股定理即可得出结论.
    【详解】
    解:如图,延长FP、EP交AB、AD于M、N.
    ∵四边形ABCD为正方形,∴∠PBE=∠PDF=45°,∴BE=PE=PM=1,PN=FD=FP=3,则AP= == =.
    本题考查了正方形的性质.求出PM,PN的长是解答本题的关键.
    12、4
    【解析】
    连接DE,交AC于点P,连接BD,由正方形的性质及对称的性质可得DE即为所求,然后运用勾股定理在RT△CDE中求解即可.
    【详解】
    解:连接DE,交AC于点P,连接BD.
    ∵点B与点D关于AC对称,
    ∴DE的长即为PE+PB的最小值,
    ∵AB=8,E是BC的中点,
    ∴CE=4,
    在Rt△CDE中,
    DE=.
    故答案为.
    正方形的性质、对称的性质及勾股定理是本题的考点,根据题意作出辅助线并确定DE即为所求是解题的关键.
    13、
    【解析】
    首先利用勾股定理求得BC的长,然后根据折叠的性质可以得到AE=EC,则△ABE的周长=AB+BC,即可求解.
    【详解】
    解:在直角△ABC中,BC= =8cm,
    ∵将折叠,使点与点重合,
    ∵AE=EC,
    ∴△ABE的周长=AB+BE+AE=AB+BE+EC=AB+BC=6+8=14(cm).
    故答案是:14 cm.
    本题考查了轴对称(折叠)的性质以及勾股定理,正确理解折叠中相等的线段是关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)种口罩每包售价16元,种口罩每包售价36元;(2)822包
    【解析】
    (1)设种口罩每包售价元,则种口罩每包售价元,根据等量关系:用64元购买到A种口罩的数量和144元购买到B种口罩的数量相同,列出方程并解方程即可.
    (2)设种口罩买包,种口罩买包,则种口罩买包,根据等量关系:三种口罩共花费12000元,得到,进而得出总数量关于n的函数关系式,根据一次函数的最值求解即可.
    【详解】
    解:(1)设种口罩每包售价元,则种口罩每包售价元,依题意,得:
    解得:
    经检验:是原方程的解
    ∴,∴(元)
    答:种口罩每包售价16元,种口罩每包售价36元
    (2)设种口罩买包,种口罩买包,则种口罩买包

    ∵是5的倍数,∴
    总数量为
    ∵,∴取最大值时,值最小
    又∵
    ∴当时,总口罩最少为
    (包)
    ∴该店至少可以购买进三种口罩共822包.
    本题考查分式方程的实际应用及一次函数的实际应用,准确找到等量关系列出分式方程及一次函数解析式是解题的关键.
    15、1
    【解析】
    设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,构建方程组,利用整体的思想思考问题,求出x+4y即可.
    【详解】
    解:设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,
    ∵正方形MNKT,正方形EFGH,正方形ABCD的面积分别为S1,S2,S3,S1+S2+S3=18,
    ∴得出S1=x,S2=4y+x,S3=8y+x,
    ∴S1+S2+S3=3x+12y=18,故3x+12y=18,
    x+4y=1,
    所以S2=x+4y=1,即正方形EFGH的面积为1.
    故答案为1
    本题考查勾股定理的证明,正方形的性质、全等三角形的性质等知识,解题的关键是学会利用参数,构建方程组解决问题.
    16、见解析
    【解析】
    试题分析:(1)根据题意补全图形,如图所示;
    (2)由旋转的性质得到为直角,由EF与CD平行,得到为直角,利用SAS得到与全等,利用全等三角形对应角相等即可得证.
    试题解析:(1)补全图形,如图所示;

    (2)由旋转的性质得:
    ∴∠DCE+∠ECF=,
    ∵∠ACB=,
    ∴∠DCE+∠BCD=,
    ∴∠ECF=∠BCD,
    ∵EF∥DC,
    ∴∠EFC+∠DCF=,
    ∴∠EFC=,
    在△BDC和△EFC中,

    ∴△BDC≌△EFC(SAS),
    ∴∠BDC=∠EFC=.
    17、(1) (2)
    【解析】
    利用因式分解法求一元二次方程.
    【详解】
    解:(1)分解因式得:
    解得
    (2)移项得:
    分解因式得:
    解得:
    本题考查了一元二次方程的解法,根据题选择合适的解法是解题的关键.
    18、(1)-3;-1;11;(2);(3).
    【解析】
    (1)根据根与系数的关系可求出x1+x2和x1x2的值,然后利用完全平方公式将变形为,再代值求解即可;
    (2)利用加减法结合因式分解解方程组,然后求值即可;
    (3)根据材料中的的解法将等式变形,然后将m和看作一个整体,利用一元二次方程根与系数的关系,可求出m+和m•的值,然后再代值求解.
    【详解】
    解:(1)∵为方程的两根,
    ∴,
    故答案为:-3;-1;11;
    (2)
    ①×b得:
    ②×a得:
    ③-④得:

    ∴或
    又∵
    ∴,即
    故答案为:;
    (3)由n2+3n-2=0可知n≠0;


    又2m2-3m-1=0,且mn≠1,即m≠;
    ∴m、是方程2x2-3x-1=0的两根,
    ∴m+=,m•=;
    ∴.
    本题考查一元二次方程根与系数的关系,能够正确的理解材料的含义,并熟练地掌握根与系数的关系是解答此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、﹣2y(x﹣4)2
    【解析】
    试题分析:根据提取公因式以及完全平方公式即可求出:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2
    故答案为﹣2y(x﹣4)2
    考点:因式分解
    20、70°
    【解析】
    由旋转的角度易得∠ACA′=20°,若AC⊥A'B',则∠A′、∠ACA′互余,由此求得∠ACA′的度数,由于旋转过程并不改变角的度数,因此∠BAC=∠A′,即可得解.
    【详解】
    解:由题意知:∠ACA′=20°;
    若AC⊥A'B',则∠A′+∠ACA′=90°,
    得:∠A′=90°-20°=70°;
    由旋转的性质知:∠BAC=∠A′=70°;
    故∠BAC的度数是70°.
    故答案是:70°
    本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.
    21、1.
    【解析】
    ∵△ABC沿射线BC方向平移2个单位后得到△DEF,
    ∴DE=AB=1,CE=BC−BE=6−2=1,
    ∵∠B=∠DEC=60°,
    ∴△DEC是等边三角形,
    ∴DC=1,
    故答案为1.
    本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.
    22、x=5.
    【解析】
    把两边都平方,化为整式方程求解,注意结果要检验.
    【详解】
    方程两边平方得:(x﹣3)(x﹣5)=0,
    解得:x1=3,x2=5,
    经检验,x2=5是方程的解,
    所以方程的解为:x=5.
    本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.
    23、1
    【解析】
    由菱形的性质可得AB=BC=1,∠DAB+∠ABC=180°,可得∠ABC=10°,可证△ABC是等边三角形,可得AC=1.
    【详解】
    如图,
    ∵四边形ABCD是菱形
    ∴AB=BC=1,∠DAB+∠ABC=180°
    ∴∠ABC=10°,且AB=BC
    ∴△ABC是等边三角形
    ∴AC=AB=1
    故答案为:1
    本题考查了菱形的性质,等边三角形的判定和性质,熟练运用菱形的性质是本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)共有17种方案;(3)当时,有最大值,即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.
    【解析】
    (1)根据“用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同”列出方程并解答;
    (2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(800-x)袋,然后根据总利润列出一元一次不等式组解答;
    (3)设总利润为W,根据总利润等于两种绿色袋装食品的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.
    【详解】
    解:(1)依题意得:
    解得:,
    经检验是原分式方程的解;
    (2)设购进甲种绿色袋装食品袋,表示出乙种绿色袋装食品袋,根据题意得,
    解得:,
    ∵是正整数,,
    ∴共有17种方案;
    (3)设总利润为,则,
    ①当时,,随的增大而增大,
    所以,当时,有最大值,
    即此时应购进甲种绿色袋装食品256袋,乙种绿色袋装食品544袋;
    ②当时,,(2)中所有方案获利都一样;
    ③当时,,随的增大而减小,
    所以,当时,有最大值,
    即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.
    本题考查了分式方程与一元一次不等式组的综合应用。
    25、(1)y=x+5;(2)5;(1)7或1
    【解析】
    (1)利用待定系数法求一次函数的解析式;
    (2)设直线AB交x轴于C,如图,则C(﹣5,0),然后根据三角形面积公式计算S△OPC即可;
    (1)利用三角形面积公式得到×5×|m|=2××1×5,解得m=2或m=﹣2,然后利用一次函数解析式计算出对应的纵坐标即可.
    【详解】
    解:(1)设这个一次函数的解析式是y=kx+b,
    把点A(0,5),点B(﹣1,4)的坐标代入得:,解得:k=1,b=5,
    所以这个一次函数的解析式是:y=x+5;
    (2)设直线AB交x轴于C,如图,
    当y=0时,x+5=0,解得x=﹣5,则C(﹣5,0),
    当n=2时,S△OPC=×5×2=5,
    即直线AB,直线OP与x轴围成的图形的面积为5;
    (1)∵当△OAP的面积等于△OAB的面积的2倍,
    ∴×5×|m|=2××1×5,
    ∴m=2或m=﹣2,
    即P点的横坐标为2或﹣2,
    当x=2时,y=x+5=7,此时P(2,7);
    当x=﹣2时,y=x+5=1,此时P(﹣2,1);
    综上所述,n的值为7或1.
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
    26、(1)图见解析,A1(2,-4);(2)图见解析,面积为
    【解析】
    (1)根据网格结构找出点A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;
    (2)根据网格结构找出点A、B绕点C顺时针旋转90°的对应点A2、B2的位置,然后顺次连接即可;利用勾股定理列式求出AC,再根据扇形面积公式列式计算即可得解.
    【详解】
    解:(1)△A1B1C1如图所示,A1(2,-4);
    (2)△A2B2C如图所示,由勾股定理得,
    线段CA所扫过的图形是一个扇形,
    其面积为:.
    本题考查了利用旋转变换作图,勾股定理,扇形面积公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
    题号





    总分
    得分


    进价(元/袋)
    售价(元/袋)
    20
    13

    相关试卷

    2024年山西省临汾市数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024年山西省临汾市数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山西临汾霍州三中数学九上开学质量检测试题【含答案】:

    这是一份2024年山西临汾霍州三中数学九上开学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山西省临汾平阳九年级数学第一学期开学检测模拟试题【含答案】:

    这是一份2024-2025学年山西省临汾平阳九年级数学第一学期开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map