搜索
    上传资料 赚现金
    英语朗读宝

    山西省吕梁汾阳市2025届九年级数学第一学期开学考试试题【含答案】

    山西省吕梁汾阳市2025届九年级数学第一学期开学考试试题【含答案】第1页
    山西省吕梁汾阳市2025届九年级数学第一学期开学考试试题【含答案】第2页
    山西省吕梁汾阳市2025届九年级数学第一学期开学考试试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西省吕梁汾阳市2025届九年级数学第一学期开学考试试题【含答案】

    展开

    这是一份山西省吕梁汾阳市2025届九年级数学第一学期开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图1.两次旋转的角度分别为( )
    A.45°,90°B.90°,45°C.60°,30°D.30°,60°
    2、(4分)如图,等腰三角形的底边长为,面积是, 腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为( )
    A.B.C.D.
    3、(4分)小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是( ).
    A.两人从起跑线同时出发,同时到达终点
    B.小苏跑全程的平均速度大于小林跑全程的平均速度
    C.小苏前跑过的路程大于小林前跑过的路程
    D.小林在跑最后的过程中,与小苏相遇2次
    4、(4分)炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是
    A.B.C.D.
    5、(4分)如图,菱形中,,这个菱形的周长是( )
    A.B.C.D.
    6、(4分)在矩形ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,CE=2,则矩形ABCD的周长( )
    A.10B.15C.20D.22
    7、(4分)下列各点中,不在反比例函数图象上的点是( )
    A.B.C.D.
    8、(4分)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
    A.平均数B.中位数C.众数D.方差
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若分式的值为0,则x=_____.
    10、(4分)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=2,ON=6,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是_____.
    11、(4分)将点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A′的坐标为 ______________.
    12、(4分)如图(1)所示,在Rt△ABC中,∠B=90°,AB=4,BC=3,将△ABC沿着AC翻折得到△ADC,如图(2),将△ADC绕着点A旋转到△AD′C′,连接CD′,当CD′∥AB时,四边形ABCD的面积为_____.
    13、(4分)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在△ABC中,,,,求AB的长.
    15、(8分)为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量 与药物在空气中的持续时间成正比例;燃烧后,与成反比例(如图所示).现测得药物分钟燃完,此时教室内每立方米空气含药量为.根据以上信息解答下列问题:
    (1)分别求出药物燃烧时及燃烧后 关于的函数表达式.
    (2)当每立方米空气中的含药量低于 时,对人体方能无毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?
    (3)当室内空气中的含药量每立方米不低于 的持续时间超过分钟,才能有效杀灭某种传染病毒.试判断此次消毒是否有效,并说明理由.
    16、(8分)如图,,平分交于点,于点,交于点,连接,求证:四边形是菱形.
    17、(10分)某个体户购进一批时令水果,20天销售完毕,他将本次的销售情况进行了跟踪记录,根据所记录的数据绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲,销售单价P(元/千克)与销售时间x(天)之间的关系如图乙.
    (1)求y与x之间的函数关系式.
    (2)分别求第10天和第15天的销售金额.
    (3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
    18、(10分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务,求原计划每小时抢修道路多少米?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.
    20、(4分)已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h时,他们之间的距离为______km.
    21、(4分)经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是 .
    22、(4分)若整数m满足,且,则m的值为___________.
    23、(4分)计算:(2019﹣)0+(﹣1)2017+|2﹣π|+=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.
    (1)求直线AD及抛物线的解析式;
    (2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?
    (3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.
    25、(10分)(1)计算:;
    (2)已知,求代数式的值.
    26、(12分)计算:6﹣5﹣+3.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    本题考查了旋转的性质、等腰直角三角形的性质. 图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图1中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.
    解:根据图1可知,
    ∵△ABC和△ADE是等腰直角三角形,
    ∴∠CAB=45°,
    即△ABC绕点A逆时针旋转45°可到△ADE;
    如图,
    ∵△ABC和△ADE是等腰直角三角形,
    ∴∠DAE=∠CAB=45°,
    ∴∠FAB=∠DAE+∠CAB=90°,
    即图1可以逆时针连续旋转90°得到图1.
    故选A.
    2、C
    【解析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
    【详解】
    解:连接AD,
    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=(CM+MD)+CD
    故选:C.
    本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    3、D
    【解析】
    A.由图可看出小林先到终点,A错误;
    B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;
    C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;
    D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.
    故选D.
    4、D
    【解析】
    试题分析:由乙队每天安装x台,则甲队每天安装x+2台,则根据关键描述语:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时间=乙队所用时间,据此列出分式方程:.故选D.
    5、C
    【解析】
    通过菱形性质及勾股定理求出边AB的值,周长为4AB即可.
    【详解】
    解:因为四边形ABCD是菱形,
    所以AC⊥BD,设AC与BD交于点O,
    则AO=1,BO=2,
    所以AB=.
    周长为4AB=4.
    故选:C.
    本题主要考查了菱形的性质,解决四边形问题一般转化为三角形问题.
    6、C
    【解析】
    由矩形ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD、CD的长.进而解答即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OA=OC,AD∥BC,
    ∵OE∥BC,
    ∴OE∥AD,
    ∴OE是△ACD的中位线,
    ∵OE=3cm,
    ∴AD=2OE=2×3=6(cm).
    ∵CE=2,
    ∴CD=4,
    ∴矩形ABCD的周长=20,
    故选:C.
    此题考查了矩形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.
    7、A
    【解析】
    直接利用反比例函数图象上点的坐标特点进而得出答案.
    【详解】
    解:∵,
    ∴xy=12,
    A.(3,−4),此时xy=3×(−4)=−12,符合题意;
    B、(3,4),此时xy=3×4=12,不合题意;
    C、(2,6),此时xy=2×6=12,不合题意;
    D、(−2,−6),此时xy=−2×(−6)=12,不合题意;
    故选:A.
    此题主要考查了反比例函数图象上点的坐标特征,属于基础题.
    8、D
    【解析】
    解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
    B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
    C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
    D.原来数据的方差==,
    添加数字2后的方差==,
    故方差发生了变化.
    故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    直接利用分式的值为零,则分子为零分母不为零,进而得出答案.
    【详解】
    ∵分式的值为0,
    ∴x2-1=0,(x+1)(x-3)≠0,
    解得:x=1.
    故答案为1.
    此题主要考查了分式的值为零的条件,正确把握定义是解题关键.
    10、2
    【解析】
    作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可.
    【详解】
    作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:
    连接M′N′,即为MP+PQ+QN的最小值.
    根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,
    ∴△ONN′为等边三角形,△OMM′为等边三角形,
    ∴∠N′OM′=90°,
    ∴在Rt△M′ON′中,
    M′N′=.
    故答案为:2.
    本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.
    11、 (-2,2)
    【解析】
    由题意根据点向左平移横坐标减,向上平移纵坐标加求解即可.
    【详解】
    解:∵点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到点A′,
    ∴点A′的横坐标为1-3=-2,纵坐标为-3+5=2,
    ∴A′的坐标为(-2,2).
    故答案为:(-2,2).
    本题考查坐标与图形变化-平移,注意掌握平移时点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    12、
    【解析】
    过点A作AE⊥AB交CD′的延长线于E,构造直角三角形,利用勾股定理即可.
    【详解】
    解:如图(2),过点A作AE⊥AB交CD′的延长线于E,由翻折得AD=AB=4
    ∵CD′∥AB
    ∴∠BCE+∠ABC=180°,
    ∵∠ABC=90°
    ∴∠BCE=90°
    ∵AE⊥AB
    ∴∠BAE=90°
    ∴ABCE是矩形,AD′=AD=AB=4
    ∴AE=BC=3,CE=AB=4,∠AEC=90°
    ∴D′E==
    ∴CD′=CE﹣D′E=4﹣
    ∴S四边形ABCD′=(AB+CD′)•BC=(4+4﹣)×3=,
    故答案为:.
    本题考查了勾股定理,矩形性质,翻折、旋转的性质,梯形面积等,解题关键对翻折、旋转几何变换的性质要熟练掌握和运用.
    13、x>-1.
    【解析】
    结合函数的图象利用数形结合的方法确定不等式的解集即可.
    【详解】
    观察图象知:当x>-1时,kx+b>4,
    故答案为x>-1.
    考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    三、解答题(本大题共5个小题,共48分)
    14、AB=9+4.
    【解析】
    作CD⊥AB于D,据含30度的直角三角形三边的关系得到CD=,AD=9,再在Rt△BCD中根据正切的定义可计算出BD,然后把AD与BD相加即可.
    【详解】
    解:如图,过点C作CD⊥AB于点D.
    ∵在Rt△CDA中,∠A=30°,
    ∴CD=AC•sin30°=3,AD=AC×cs30°=9,
    ∵在Rt△CDB中,
    ∴BD===4.
    ∴AB=AD+DB=9+4.
    本题考查了解直角三角形.解题时,通过作CD⊥AB于D构建Rt△ACD、Rt△BCD是解题关键.
    15、(1),;(2)第分至分内消毒人员不可以留在教室里;(3)本次消毒有效.
    【解析】
    (1)设燃烧时药物燃烧后y与x之间的解析式y=ax,药物燃烧后y与x之间的解析式y=,把点(10,8)代入即可;
    (2)把y=1.6代入函数解析式,求出相应的x;
    (3)把y=3.2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与20进行比较,大于等于20就有效;
    【详解】
    (1)设燃烧时药物燃烧后y与x之间的解析式y=ax,点(10,8)代入,得
    10a=8,
    ∴a=,
    ∴;
    药物燃烧后y与x之间的解析式y=,把点(10,8)代入,得
    k=80,
    ∴;
    (2)把代入可得
    把代入可得
    根据图象,当时,
    即从消毒开始后的第分至分内消毒人员不可以留在教室里.
    (3)把代入可得
    把代入可得
    本次消毒有效.
    本题考查一次函数、反比例函数的定义、性质与运用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,进一步根据题意求解答案.
    16、见解析
    【解析】
    根据题意首先利用ASA证明,再得出四边形是平行四边形,再利用四边相等来证明四边形是菱形即可.
    【详解】
    证明:∵,
    ∴,
    ∵平分交于点,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    在和中
    ,,,
    ∴,
    ∴,
    ∴四边形是平行四边形,
    ∵,
    ∴四边形是菱形
    此题考查全等三角形的判定与性质,平行四边形的判定,菱形的判定,解题关键在于利用平行线的性质来求证.
    17、 (1)当;(2)第10天:200元,第15天:270元;(3)最佳销售期有5天,最高为9.6元.
    【解析】
    (1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;
    (2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额.
    (3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式﹣6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据.(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.
    【详解】
    解:(1)①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
    ∵直线y=k1x过点(15,30),∴15k1=30,解得k1=2.
    ∴y=2x(0≤x≤15);
    ②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
    ∵点(15,30),(20,0)在y=k2x+b的图象上,
    ∴,解得:.
    ∴y=﹣6x+120(15<x≤20).
    综上所述,可知y与x之间的函数关系式为:.
    .
    (2)∵第10天和第15天在第10天和第20天之间,
    ∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
    ∵点(10,10),(20,8)在z=mx+n的图象上,,
    解得:.
    ∴.
    当x=10时,,y=2×10=20,销售金额为:10×20=200(元);
    当x=15时,,y=2×15=30,销售金额为:9×30=270(元).
    故第10天和第15天的销售金额分别为200元,270元.
    (3)若日销售量不低于1千克,则y≥1.
    当0≤x≤15时,y=2x,
    解不等式2x≥1,得x≥12;
    当15<x≤20时,y=﹣6x+120,
    解不等式﹣6x+120≥1,得x≤16.
    ∴12≤x≤16.
    ∴“最佳销售期”共有:16﹣12+1=5(天).
    ∵(10≤x≤20)中<0,∴p随x的增大而减小.
    ∴当12≤x≤16时,x取12时,p有最大值,此时=9.6(元/千克).
    故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元
    考核知识点:一次函数在销售中的运用.要注意理解题意,分类讨论情况.
    18、280米
    【解析】
    设原计划每小时抢修道路x米,根据一共用10小时完成任务列出方程进行求解即可.
    【详解】
    设原计划每小时抢修道路x米,
    根据题意得:+=10,
    解得:x=280,
    经检验:x=280是原方程的解,
    答:原计划每小时抢修道路280米.
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.注意分式方程要检验.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、23
    【解析】当数据个数是奇数个时,中位数是最中间的数;当数据个数是偶数个时,中位数是最中间的两个数的平均数,由折线图可知,20本的有4人;21本的有8人;23本的有20人,24本的有8人,所以中位数是23。
    故答案是:23
    20、1.5
    【解析】
    因为甲过点(0,0),(2,4),所以S甲=2t.
    因为乙过点(2,4),(0,3),所以S乙=t+3,当t=3时,S甲-S乙=6-=
    21、.
    【解析】
    试题分析:画树状图为:
    共有9种等可能的结果数,其中两辆汽车都直行的结果数为1,所以则两辆汽车都直行的概率为,故答案为.
    考点:列表法与树状图法.
    22、,,.
    【解析】
    由二次根式的性质,得到,结合,即可求出整数m的值.
    【详解】
    解:∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴整数m的值为:,,;
    故答案为:,,.
    本题考查了二次根式的性质,以及解一元一次不等式,解题的关键是熟练掌握二次根式的性质,正确得到m的取值范围.
    23、π+2
    【解析】
    根据零指数幂,负整数指数幂,绝对值的性质计算即可.
    【详解】
    原式=.
    故答案为:.
    本题主要考查实数的混合运算,掌握实数的混合运算的顺序和法则是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=x2+2x﹣1;(2)当m=-时,PQ最长,最大值为;(1)R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
    【解析】
    (1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;
    (2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
    (1)根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案
    【详解】
    解:(1)将A(1,0),B(﹣1,0)代入y=ax2+bx﹣1得:
    解得:
    ∴抛物线的解析式为:y=x2+2x﹣1,
    当x=﹣2时,y=(﹣2)2﹣4﹣1=﹣1,
    ∴D(﹣2,﹣1),
    设直线AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣1)代入得:
    解得:
    ∴直线AD的解析式为y=x﹣1;
    因此直线AD的解析式为y=x﹣1,抛物线的解析式为:y=x2+2x﹣1.
    (2)∵点P在直线AD上,Q抛物线上,P(m,n),
    ∴n=m﹣1 Q(m,m2+2m﹣1)
    ∴PQ的长l=(m﹣1)﹣(m2+2m﹣1)=﹣m2﹣m+2 (﹣2≤m≤1)
    ∴当m= 时,PQ的长l最大=﹣( )2﹣()+2= .
    答:线段PQ的长度l与m的关系式为:l=﹣m2﹣m+2 (﹣2≤m≤1)
    当m=时,PQ最长,最大值为.
    (1)①若PQ为平行四边形的一边,则R一定在直线x=﹣2上,如图:
    ∵PQ的长为0<PQ≤的整数,
    ∴PQ=1或PQ=2,
    当PQ=1时,则DR=1,此时,在点D上方有R1(﹣2,﹣2),在点D下方有R2(﹣2,﹣4);
    当PQ=2时,则DR=2,此时,在点D上方有R1(﹣2,﹣1),在点D下方有R4(﹣2,﹣5);
    ②若PQ为平行四边形的一条对角线,则PQ与DR互相平分,此时R与点C重合,即R5(0,﹣1)
    综上所述,符合条件的点R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
    答:符合条件的点R共有5个,即:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
    此题考查一元二次方程-用待定系数法求解析式,二次函数的性质,平行四边形的性质,解题关键在于把已知点代入解析式
    25、(1);(2)0.
    【解析】
    (1)先进行二次根式的乘除法运算,然后再进行减法运算即可;
    (2)将原式利用完全平方公式进行变形,然后将x的值代入进行计算即可.
    【详解】
    (1)原式

    (2)原式
    =

    将代入原式得,.
    本题考查二次根式的化简求值,灵活运用二次根式的性质进行解题是关键.
    26、2
    【解析】
    把同类二次根式分别合并即可.
    【详解】
    6﹣5﹣+3
    =(6﹣5)+(﹣1+3)
    =+2.
    考查二次根式的加减法,二次根式加减法一般过程为:先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.
    题号





    总分
    得分

    相关试卷

    2025届山西省吕梁市汾阳市九上数学开学达标测试试题【含答案】:

    这是一份2025届山西省吕梁市汾阳市九上数学开学达标测试试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山西省汾阳市九上数学开学联考试题【含答案】:

    这是一份2025届山西省汾阳市九上数学开学联考试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山西省吕梁地区文水县九年级数学第一学期开学考试模拟试题【含答案】:

    这是一份2024年山西省吕梁地区文水县九年级数学第一学期开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map