![山西省吕梁市孝义市2024-2025学年数学九年级第一学期开学经典试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16291733/0-1729904678385/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山西省吕梁市孝义市2024-2025学年数学九年级第一学期开学经典试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16291733/0-1729904678433/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山西省吕梁市孝义市2024-2025学年数学九年级第一学期开学经典试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16291733/0-1729904678450/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山西省吕梁市孝义市2024-2025学年数学九年级第一学期开学经典试题【含答案】
展开
这是一份山西省吕梁市孝义市2024-2025学年数学九年级第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将方程x2+4x+1=0配方后,原方程变形为( )
A.(x+2)2=3B.(x+4)2=3C.(x+2)2=﹣3D.(x+2)2=﹣5
2、(4分)在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为( )
A.20米B.30米C.16米D.15米
3、(4分)我校男子足球队22名队员的年龄如下表所示:这些队员年龄的众数和中位数分别是( )
A.18,17B.17,18C.18,17.5D.17.5,18
4、(4分)如图,在直线l上有三个正方形m、q、n,若m、q的面积分别为5和11,则n的面积( )
A.4B.6C.16D.55
5、(4分)若一次函数向上平移2个单位,则平移后得到的一次函数的图象与轴的交点为
A.B.C.D.
6、(4分)漳州市政府为了鼓励市民绿色出行,投资了一批城市公共自行车,收费如下:第1小时内免费,1小时以上,每半小时收费0.5元(不到半小时按半小时计).马小跳刷卡时显示收费1.5元,则马小跳租车时间x的取值范围为( )
A.1<x≤1.5B.2<x≤2.5C.2.5<x≤3D.3<x≤4
7、(4分)如图,在平行四边形ABCD中,对角线AC、BD交于点O,E是CD的中点,若OE=2,则AD的长为( )
A.2B.3
C.4D.5
8、(4分)若一个函数中,随的增大而增大,且,则它的图象大致是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知是整数,则正整数n的最小值为___
10、(4分)因式分解:=______.
11、(4分)如图,在四边形ABCD中,对角线AC,BD交于点O,且OA=OC,OB=OD,要使四边形ABCD为矩形,则需要添加的条件是_______(只填一个即可).
12、(4分)使二次根式有意义的x的取值范围是_____.
13、(4分)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.
(1)求A点坐标;
(2)求△OAC的面积;
(3)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标;
(4)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.
15、(8分)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.
16、(8分)为了对某市区全民阅读状况进行调查和评估,有关部门随机抽取了部分市民进行每天阅读时间情况的调查,并根据调查结果制做了如下尚不完整的频数分布表(被调查者每天的阅读时间均在0﹣120分钟之内)
(1)被调查的市民人数为多少,表格中,m,n为多少;
(2)补全频数分布直方图;
(3)某市区目前的常住人口约有118万人,请估计该市区每天阅读时间在60~120分钟的市民大约有多少万人?
17、(10分)如图,点、、、是四边形各边的中点,、是对角线,求证:四边形是平行四边形.
18、(10分)(1)计算:40372﹣4×2018×2019;
(2)将边长为1的一个正方形和一个底边为1的等腰三角形如图摆放,求△ABC的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在⊙O中,AC为直径,过点O作OD⊥AB于点E,交⊙O于点D,连接BC,若AB=,ED=,则BC=_____.
20、(4分)如图,一棵大树在离地面4米高的处折断,树顶落在离树底端的5米远处,则大树折断前的高度是______米(结果保留根号).
21、(4分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为_____.
22、(4分)已知数据,-7,, ,-2017,其中出现无理数的频率是________________.
23、(4分)分解因式:x2-9=_ ▲ .
二、解答题(本大题共3个小题,共30分)
24、(8分)某文化用品店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。求第一批书包的单价。
25、(10分)已知2y+1与3x-3成正比例,且x=10时,y=4
(1)求y与x之间的函数关系式,并指出它是什么函数;(2)点P在这个函数图象上吗?
26、(12分)已知在等腰三角形中,是的中点,是内任意一点,连接,过点作, 交的延长线于点,延长到点,使得,连接.
(1)如图1,求证:四边形是平行四边形;
(2)如图2,若,求证:且;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
【详解】
∵x2+4x+1=0,
∴x2+4x=−1,
∴x2+4x+4=−1+4,
∴(x+2) 2=3.
故选:A.
此题考查解一元二次方程-配方法,掌握运算法则是解题关键
2、B
【解析】
设此时高为18米的旗杆的影长为xm,利用“在同一时刻物高与影长的比相等”列出比例式,进而即可求解.
【详解】
设此时高为18米的旗杆的影长为xm,
根据题意得:=,
解得:x=30,
∴此时高为18米的旗杆的影长为30m.
故选:B.
本题考查了相似三角形的应用,掌握相似三角形的性质和“在同一时刻物高与影长的比相等”的原理,是解题的关键.
3、A
【解析】
根据众数,中位数的定义进行分析即可.
【详解】
试题解析:18出现的次数最多,18是众数.
第11和第12个数分别是1、1,所以中位数为1.
故选A.
考核知识点:众数和中位数.
4、C
【解析】
运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.
【详解】
解:由于m、q、n都是正方形,所以AC=CD,∠ACD=90°;
∵∠ACB+∠DCE=∠ACB+∠BAC=90°,
∴∠BAC=∠DCE,且AC=CD,∠ABC=∠DEC=90°
∴△ACB≌△DCE(AAS),
∴AB=CE,BC=DE;
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,
即Sn=Sm+Sq=11+5=16,
∴正方形n的面积为16,
故选C.
本题主要考查对全等三角形和勾股定理的综合运用,关键是证明三角形全等.
5、C
【解析】
首先根据平移的性质,求出新的函数解析式,然后即可求出与轴的交点.
【详解】
解:根据题意,可得平移后的函数解析式为
,即为
∴与轴的交点,即
代入解析式,得
∴与轴的交点为
故答案为C.
此题主要考查根据函数图像的平移特征,求坐标,熟练掌握,即可解题.
6、B
【解析】
根据题意,可以列出相应的不等式组,从而可以求得x的取值范围.
【详解】
由题意可得,,解得,2<x≤2.5,故选B.
本题考查一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的不等式组,注意题目中每半小时收费0.5元,也就是说每小时收费1元.
7、C
【解析】
平行四边形中对角线互相平分,则点O是BD的中点,而E是CD边中点,根据三角形两边中点的连线平行于第三边且等于第三边的一半可得AD=1.
【详解】
解:∵四边形ABCD是平行四边形,
∴OB=OD,OA=OC.
又∵点E是CD边中点,
∴AD=2OE,即AD=1.
故选:C.
此题主要考查了平行四边形的性质及三角形中位线定理,三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用.
8、B
【解析】
根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像.
【详解】
根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像为B
故选B
本题主要考查了一次函数的图像,以及和对图像的影响,掌握一次函数的图像和性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
【详解】
∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.
主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
10、2(x+3)(x﹣3).
【解析】
试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x2-9)=2(x+3)(x-3).
考点:因式分解.
11、∠DAB=90°.
【解析】
根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.
【详解】
解:可以添加条件∠DAB=90°,
∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
∵∠DAB=90°,
∴四边形ABCD是矩形,
故答案为∠DAB=90°.
此题主要考查了矩形的判定,关键是掌握矩形的判定定理.
12、
【解析】
试题分析:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
考点:二次根式有意义的条件.
13、
【解析】
试题解析:设BE与AC交于点P,连接BD,
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE=BE最小.
即P在AC与BE的交点上时,PD+PE最小,为BE的长度;
∵正方形ABCD的边长为1,
∴AB=1.
又∵△ABE是等边三角形,
∴BE=AB=1.
故所求最小值为1.
考点:轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.
三、解答题(本大题共5个小题,共48分)
14、(1)A点坐标是(2,3);(2)=;(3)P点坐标是(0, );(4)点Q是坐标是(,)或(,-).
【解析】
解析
联立方程,解方程即可求得;
C点位直线y=﹣2x+7与x轴交点,可得C点坐标为(,0),由(1)得A点坐标,可得的值;
(3)设P点坐标是(0,y),根据勾股定理列出方程,解方程即可求得;
(4)分两种情况:①当Q点在线段AB上:作QD⊥y轴于点D,则QD=x,根据
=-列出关于x的方程解方程求得即可;②当Q点在AC的延长线上时,作QD⊥x轴于点D,则QD=-y,根据=- 列出关于y的方程解方程求得即可.
【详解】
解(1)解方程组:得:,
A点坐标是(2,3);
(2) C点位直线y=﹣2x+7与x轴交点,可得C点坐标为(,0)
==
(3)设P点坐标是(0,y ),
△OAP是以OA为底边的等腰三角形,
OP=PA,
,
解得y=,
P点坐标是(0, ),
故答案为(0, );
(4)存在;
由直线y=-2x+7可知B(0,7),C(,0),
==<6,
==7>6,
Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),
当Q点在线段AB上:作QD⊥y轴于点D,如图1,
则QD=x,=-=7-6=1,
OBQD=1,即: 7x=1,
x=,
把x=代入y=-2x+7,得y=,
Q的坐标是(,),
当Q点在AC的延长线上时,作QD⊥x轴于点D,如图2
则QD=-y,
=- =6-=,
OCQD=,即:,
y=-,
把y=-代入y=-2x+7,解得x=
Q的坐标是(,-),
综上所述:点Q是坐标是(,)或(,-).
本题是一次函数的综合题,考查了交点的求法,勾股定理的应用,三角形面积的求法等,分类讨论思想的运用是解题的关键.
15、1米
【解析】
设旗杆的高度为x米,则绳长为(x+1)米,根据勾股定理即可得出关于x的一元一次方程,解之即可得出结论.
【详解】
设旗杆的高度为x米,则绳长为(x+1)米,
根据题意得:(x+1)2=x2+52,即2x-24=0,
解得:x=1.
答:旗杆的高度是1米.
此题考查勾股定理的应用,解一元一次方程,根据勾股定理列出关于x的一元一次方程是解题的关键.
16、(1)1000,100,0.05;(2)根据(1)补图见解析;(3)估计该市区每天阅读时间在 60~120分钟的市民大约有17.7万人.
【解析】
(1)根据0≤x<30的频数和频率先求出总人数,用总人数乘以60≤x<90的频率求出m,用90≤x≤120的频数除以总人数求出n;
(2)根据(1)求出的总人数,补全统计图即可;
(3)用常住人口数乘以阅读时间在60~120 分钟的人数的频率即可得出答案.
【详解】
(1)根据题意得:被调查的市民人数为=1000(人),
m=1000×0.1=100,
n==0.05;
(2)根据(1)补图如下:
(3)根据题意得:118×(0.1+0.05)=17.7(万人)
估计该市区每天阅读时间在 60~120分钟的市民大约有17.7万人.
故答案为(1)1000,100,0.05;(2)根据(1)补图见解析;(3)估计该市区每天阅读时间在 60~120分钟的市民大约有17.7万人.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
17、见解析.
【解析】
根据三角形中位线定理得到,EF∥AC,,GH∥AC,得到EF=GH,EF∥GH,根据平行四边形的判定定理证明结论.
【详解】
证明:、分别是、的中点
是的中位线
同理:
四边形是平行四边形
本题考查的是三角形中位线定理、平行四边形的判定,掌握三角形中位线定理是解题的关键.
18、(1)1;(2).
【解析】
(1)根据完全平方公式进行计算,即可得出答案;
(2)如图,过点C作CD⊥BF于D,CE⊥AB,交AB延长线于E,利用正方形和等腰三角形的性质得出CE的长,进而得出△ABC的面积即可.
【详解】
(1)40372﹣4×2018×2019
=(2019+2018)2﹣4×2018×2019
=20192+2×2019×2018+20182-4×2018×2019
=20192-2×2019×2018+20182
=(2019﹣2018)2
=12
=1.
(2)如图,过点C作CD⊥BF于D,CE⊥AB,交AB延长线于E,
∵△BCF是等腰三角形,
∴DB=BF,
∵四边形ABFG是正方形,
∴∠FBE=90°,
∴四边形BECD是矩形,
∵BF=1,
∴CE=BD=BF,
∴△ABC的面积=AB•CE=×1×=.
本题考查正方形的性质、等腰三角形的性质及矩形的判定,熟练掌握等腰三角形“三线合一”的性质是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先根据垂径定理得出AE=EB=AB,再由勾股定理求出半径和OE的值,最后利用三角形中位线的性质可知BC=2OE,则BC的长度即可求解.
【详解】
∵OD⊥AB,
∴AE=EB=AB= ,
设OA=OD=r,
在Rt△AOE中,
∵AO2=AE2+OE2,ED=
∴r2=()2+(r﹣)2,
∴r=,
∴OE=,
∵OA=OC,AE=EB,
∴BC=2OE= ,
故答案为:.
本题主要考查勾股定理,垂径定理,三角形中位线的性质,掌握勾股定理,垂径定理,三角形中位线的性质是解题的关键.
20、()
【解析】
设出大树原来高度,用勾股定理建立方程求解即可.
【详解】
设这棵大树在折断之前的高度为x米,根据题意得:42+52=(x﹣4)2,∴x=4或x=40(舍),∴这棵大树在折断之前的高度为(4)米.
故答案为:().
本题是勾股定理的应用,解答本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.
21、8a.
【解析】
由菱形的性质易得AC⊥BD,由此可得∠AOB=90°,结合点E是AB边上的中点可得AB=2OE=a,再结合菱形的四边相等即可求得菱形ABCD的周长为8a.
【详解】
解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD,AC⊥BD,
∴∠AOB=90°,
又∵点E为AB边上的中点,OE=a,
∴AB=2OE=2a,
∴菱形ABCD的周长=2a×4=8a.
故答案为:8a.
“由菱形的性质得到AC⊥BD,从而得到∠AOB=90°,结合点E是AB边上的中点,得到AB=2OE=2a”是正确解答本题的关键.
22、0.6
【解析】
用无理数的个数除以总个数即可.
【详解】
∵数据,-7,, ,-2017中无理数有, ,共3个,
∴出现无理数的频率是3÷5=0.6.
故答案为:0.6.
本题考查了无理数的定义,以及频率的计算,熟练运用频率公式计算是解题的关键.频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷总数
23、 (x+3)(x-3)
【解析】
x2-9=(x+3)(x-3),
故答案为(x+3)(x-3).
二、解答题(本大题共3个小题,共30分)
24、80元
【解析】
首先设购进第一批书包的单价是x元,则购进第二批书包的单价是(x+4)元,根据题意可得等量关系:第一批购进的数量×3=第二批购进的数量,由等量关系可得方程,解方程即可.
【详解】
设第一批书包的单价是每个元,这第二批书包的单价是每个元,根据题意得
解这个方程得
经检验时所列方程的解.
答:第一批书包的单价是每个80元.
此题主要考查了分式方程的应用,关键是弄清题意,设出未知数,列出方程.列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性.
25、(1),y是x的一次函数;(2)点不在这个函数的图象上.
【解析】
可设,把已知条件代入可求得k的值,则可求得函数解析式,可求得函数类型;
把P点坐标代入函数解析式进行判断即可.
【详解】
解:设,
时,,
,
,
,即,
故y是x的一次函数;
,
当时,,
点P不在这个函数的图象上.
本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.
26、(1)见解析;(2)见解析;
【解析】
(1)利用平行线的性质证明,即可解答
(2)连接,根据题意得出,再由(1)得出,得到是的中位线,即可解答
【详解】
(1)证明:.
是的中点,.
又,
(ASA).
.
又,
四边形是平行四边形.
(2)证明:如图1,连接,
图1
是的中点,
.
.
.
由(1)知,
,又由(1)知,
.
,
是的中位线.
.
,
.
此题考查等腰三角形的性质,平行线的性质,全等三角形的判定与性质,解题关键在于作辅助线
题号
一
二
三
四
五
总分
得分
批阅人
年龄/岁
14
15
16
17
18
19
人数
2
1
3
6
7
3
阅读时间x(分钟)
0≤x<30
30≤x<60
60≤x<90
90≤x≤120
频数
450
400
m
50
频率
0.45
0.4
0.1
n
相关试卷
这是一份山西省孝义市2024-2025学年九上数学开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山西省大同市矿区恒安第一中学2024-2025学年数学九年级第一学期开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山西省吕梁市孝义市初中2024-2025学年九年级上学期10月月考数学试题,文件包含24-25九年级上册数学月考1试题pdf、数学月考答案docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)