年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山西省朔州市朔城区2025届九年级数学第一学期开学经典试题【含答案】

    山西省朔州市朔城区2025届九年级数学第一学期开学经典试题【含答案】第1页
    山西省朔州市朔城区2025届九年级数学第一学期开学经典试题【含答案】第2页
    山西省朔州市朔城区2025届九年级数学第一学期开学经典试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西省朔州市朔城区2025届九年级数学第一学期开学经典试题【含答案】

    展开

    这是一份山西省朔州市朔城区2025届九年级数学第一学期开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)函数y=中自变量x的取值范围为( )
    A.x≥0B.x≥﹣2C.x≥2D.x≤﹣2
    2、(4分)若二次根式有意义,则x能取的最小整数值是( )
    A.x=0B.x=1C.x=2D.x=3
    3、(4分)下列各点中,在函数y=-图象上的是( )
    A.B.C.D.
    4、(4分)在中,若是的正比例函数,则值为
    A.1B.C.D.无法确定
    5、(4分)如图,在中,,,点在上,,,则的长为( )
    A.B.C.D.
    6、(4分)一次函数y=2x+1的图象不经过下列哪个象限( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    7、(4分)在长度为1的线段上找到两个黄金分割点P,Q,则PQ=( )
    A.B.C.D.
    8、(4分)从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是( )
    A.平均数B.中位数C.众数D.方差
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=20米,则AB的长为___________米.
    10、(4分)张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是 .
    11、(4分)计算:-=________.
    12、(4分)平行四边形ABCD中,∠A=80°,则∠C= °.
    13、(4分) 已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在边长为24cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟2cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟4cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:
    (1)经过6秒后,BP= cm,BQ= cm;
    (2)经过几秒△BPQ的面积等于?
    (3)经过几秒后,△BPQ是直角三角形?
    15、(8分)如图,直线与轴交于点,与轴交于点,与直线交于点,点的横坐标为3.
    (1)直接写出值________;
    (2)当取何值时,?
    (3)在轴上有一点,过点作轴的垂线,与直线交于点,与直线交于点,若,求的值.
    16、(8分)某人购进一批琼中绿橙到市场上零售,已知卖出的绿橙数量x(千克)与售价y(元)的关系如下表:
    (1)写出售价y(元)与绿橙数量x(千克)之间的函数关系式;
    (2)这个人若卖出50千克的绿橙,售价为多少元?
    17、(10分)如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.
    18、(10分)计算:
    (1);
    (2).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.
    20、(4分)已知a﹣2b=10,则代数式a2﹣4ab+4b2的值为___.
    21、(4分)如图,在矩形中,,,为边上一点,将沿翻折,点落在点处,当为直角三角形时,________.
    22、(4分)如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,AE=4,BC=8,有下列结论:
    ①DE=4;
    ②S△AED=S四边形ABCD;
    ③DE平分∠ADC;
    ④∠AED=∠ADC.
    其中正确结论的序号是_____(把所有正确结论的序号都填在横线上)
    23、(4分)已知互为相反数,则的值为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)求不等式组的整数解.
    25、(10分)(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB方向运动,到达点B时运动停止.
    (1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;
    (2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;
    (3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.
    26、(12分)如图,的对角线、相交于点,.
    (1)求证:;
    (2)若,连接、,判断四边形的形状,并说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    ∵函数y=有意义,
    ∴x-2≥0,
    ∴x≥2;
    故选C。
    2、B
    【解析】
    直接利用二次根式的定义分析得出答案.
    【详解】
    解:∵二次根式有意义,
    ∴3x﹣2≥0,
    解得:x≥,
    则x能取的最小整数值是:1.
    故选:B.
    此题主要考查了二次根式的定义,正确得出m的取值范围是解题关键.
    3、C
    【解析】
    把各点代入解析式即可判断.
    【详解】
    A.∵(-2)×(-4)=8≠-6,∴此点不在反比例函数的图象上,故本选项错误;
    B.∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误;
    C.∵(-1)×6=-6,∴此点在反比例函数的图象上,故本选项正确;
    D.∵×3=-≠-6,∴此点不在反比例函数的图象上,故本选项错误.
    故选C.
    此题主要考查反比例函数的图像,解题的关键是将各点代入解析式.
    4、A
    【解析】
    先根据正比例函数的定义列出关于的方程组,求出的值即可.
    【详解】
    函数是正比例函数,

    解得,
    故选.
    本题考查的是正比例函数的定义,正确把握“形如的函数叫正比例函数”是解题的关键.
    5、B
    【解析】
    根据,可得∠B=∠DAB,即,在Rt△ADC中根据勾股定理可得DC=1,则BC=BD+DC=.
    【详解】
    解:∵∠ADC为三角形ABD外角
    ∴∠ADC=∠B+∠DAB

    ∴∠B=∠DAB

    在Rt△ADC中,由勾股定理得:
    ∴BC=BD+DC=
    故选B
    本题考查勾股定理的应用以及等角对等边,关键抓住这个特殊条件.
    6、D
    【解析】
    先根据一次函数y=2x+1中k=2,b=1判断出函数图象经过的象限,进而可得出结论.
    【详解】
    ∵,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,
    故选D.
    考点:一次函数的图象.
    7、C
    【解析】
    【分析】先根据黄金分割的定义得出较长的线段AP=BQ=AB,再根据PQ=AP+BQ-AB,即可得出结果.
    【详解】:根据黄金分割点的概念,可知AP=BQ=,
    则PQ=AP+BQ-AB=
    故选:C
    【点睛】此题主要是考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(
    )叫做黄金比.熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解.
    8、C
    【解析】
    服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.
    【详解】
    由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.
    故选(C)
    本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、40
    【解析】
    【分析】推出DE是三角形ABC的中位线,即可求AB.
    【详解】因为,D、E是AC、BC的中点,
    所以,DE是三角形ABC的中位线,
    所以,AB=2DE=40米
    故答案为:40
    【点睛】本题考核知识点:三角形中位线.解题关键点:理解三角形中位线的性质.
    10、1.
    【解析】
    ∵100,80,x,1,1,这组数据的众数与平均数相等,
    ∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.
    ∴(100+80+x+1+1)÷5=1,解得,x=1.
    ∵当x=1时,数据为80,1,1,1,100,
    ∴中位数是1.
    11、1
    【解析】
    根据算术平方根和立方根定义,分别求出各项的值,再相加即可.
    【详解】
    解:因为,所以.
    故答案为1.
    本题考核知识点:算术平方根和立方根. 解题关键点:熟记算术平方根和立方根定义,仔细求出算术平方根和立方根.
    12、1
    【解析】
    试题分析:利用平行四边形的对角相等,进而求出即可.
    解:∵四边形ABCD是平行四边形,
    ∴∠A=∠C=1°.
    故答案为:1.
    13、3或7
    【解析】
    分两种情况:
    (1)当AE交BC于点E时;
    在平行四边形ABCD中,则AD∥BC,DC=AB,AD=BC
    ∴∠AEB=∠EAD,
    ∵∠DAB的平分线交BC于E,
    ∴∠AEB=∠BAE,
    ∴∠AEB=∠BAE,∴AB=BE,
    设AD=x,z则BE=x-2=5
    ∴AD=5+2=7cm,
    (2) 当AE交BC于点E,交CD于点F
    ∵ABCD为平行四边形,
    ∴AB=DC=5cm,AD=BC,AD∥BC.
    ∴∠E=∠EAD,
    又∵BE平分∠BAD,
    ∴∠EAD=∠EAB,
    ∴∠EAB=∠E,
    ∴BC+CE=AB=5,
    ∴AD=BC=5−2=3(cm).故答案为3或7
    点睛:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,关键是要分两种情况讨论解答.
    三、解答题(本大题共5个小题,共48分)
    14、(1)12、1;(2)经过2秒△BPQ的面积等于.(3)经过6秒或秒后,△BPQ是直角三角形.
    【解析】
    (1)根据路程=速度×时间,求出BQ,AP的值就可以得出结论;
    (2)作QD⊥AB于D,由勾股定理可以表示出DQ,然后根据面积公式建立方程求出其解即可;
    (3)先分别表示出BP,BQ的值,当∠BQP和∠BPQ分别为直角时,由等边三角形的性质就可以求出结论.
    【详解】
    (1)由题意,得
    AP=12cm,BQ=1cm.
    ∵△ABC是等边三角形,
    ∴AB=BC=1cm,
    ∴BP=21-12=12cm.
    故答案为:12、1.
    (2)设经过x秒△BPQ的面积等于,作QD⊥AB于D,则 BQ=4xcm.
    ∴∠QDB=90°,
    ∴∠DQB=30°,
    在Rt△DBQ中,由勾股定理,得
    解得;x1=10,x2=2,
    ∵x=10时,4x>1,故舍去
    ∴x=2.
    答:经过2秒△BPQ的面积等于.
    (3)经过t秒后,△BPQ是直角三角形.
    ∵△ABC是等边三角形,
    ∴AB=BC=1cm,∠A=∠B=∠C=60°,
    当∠PQB=90°时,
    ∴∠BPQ=30°,
    ∴BP=2BQ.
    ∵BP=1-2t,BQ=4t,
    ∴1-2t=2×4t,
    解得t=;
    当∠QPB=90°时,
    ∴∠PQB=30°,
    ∴BQ=2PB,
    ∴4t=2×(1-2t)
    解得t=6
    ∴经过6秒或秒后,△BPQ是直角三角形.
    本题考查了动点问题的运用,等边三角形的性质的运用,30°的直角三角形的性质的运用,勾股定理的运用,三角形的面积公式的运用,解答时建立根据三角形的面积公式建立一元二次方程求解是关键.
    15、(1);(2)当时,;(3)或.
    【解析】
    (1)先求出点E的坐标,再把E的坐标代入解析式即可
    (2)根据点E的坐标,结合图象即可解答
    (3)过作轴交直线于点、交直线于点,根据题意求出的坐标为,再令,得出的坐标为,根据OE,AB的解析式得出点的坐标为,点的坐标为,即可解答
    【详解】
    (1)∵直线与直线交于点,点的横坐标为3
    ∴点的坐标为,代入中

    (2)∵点的坐标为,有图像可知,当时,.
    (3)过作轴交直线于点、交直线于点


    ∴点的坐标为

    令,∴
    ∴点的坐标为
    ∵点,
    直线的解析式为,直线的解析式为
    ∴点的坐标为,点的坐标为



    ∴或
    ∴或
    此题考查一次函数中的直线位置关系,解题关键在于作辅助线
    16、 (1)y=2.1x;(2)这个人若卖出50千克的绿橙,售价为1元.
    【解析】
    (1)根据表中所给信息,判断出y与x的数量关系,列出函数关系式即可;
    (2)把x=50代入函数关系式即可.
    【详解】
    (1)设售价为y(元)与绿橙数量x(千克)之间的函数关系式为y=kx+b,由已知得,

    解得k=2.1,b=0;
    ∴y与x之间的函数关系式为y=2.1x;
    (2)当x=50时,
    y=2.1×50=1.
    答:这个人若卖出50千克的绿橙,售价为1元.
    本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,并且可以求在x一定时的函数值.
    17、AE=CF.理由见解析.
    【解析】
    试题分析:根据两组对边平行的四边形是平行四边形,可以证明四边形AECF是平行四边形,从而得到AE=CF.
    试题解析:AE=CF.理由如下:
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,即AF∥EC.
    又∵AE∥CF,
    ∴四边形AECF是平行四边形.
    ∴AE=CF.
    考点:平行四边形的判定与性质.
    18、(1)4,(2)2.
    【解析】
    (1)分别计算二次根式的乘法、去绝对值符号以及零指数幂,然后再进行加减运算即可;
    (2)先把括号里的二次根式进行化简合并后,再根据二次根式的除法法则进行计算即可得解.
    【详解】
    (1);
    =,
    =4;
    (2)
    =
    =,
    =2.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度
    【详解】
    ∵四边形ABCD是菱形,
    ∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,
    ∴BC==5cm,
    ∴S菱形ABCD==×6×8=24cm2,
    ∵S菱形ABCD=BC×AE,
    ∴BC×AE=24,
    ∴AE=cm.
    故答案为: cm.
    此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
    20、1.
    【解析】
    将a2﹣4ab+4b2进行因式分解变形为(a﹣2b)2,再把a﹣2b=10,代入即可.
    【详解】
    ∵a﹣2b=10,∴a2﹣4ab+4b2=(a﹣2b)2=102=1,故答案为:1.
    本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式因式分解,求出相应的式子的值.
    21、3或6
    【解析】
    对直角中那个角是直角分三种情况讨论,再由折叠的性质和勾股定理可BE的长.
    【详解】
    解:如图,若∠AEF=90°
    ∵∠B=∠BCD=90°=∠AEF
    ∴四边形BCFE是矩形
    ∵将ABEC沿着CE翻折
    ∴CB=CF
    ∵四边形BCFE是正方形
    ∴BE=BC-AD=6,
    如图,若∠AFE=90°
    ∵将△BEC沿着CE翻折
    ∴CB=CF=6,∠B=∠EFC=90°,BE=EF
    ∵∠AFE+∠EFC=180°
    ∴点A,点F,点C三点共线

    ∴AF=AC-CF=4


    ∴BE=3,
    若∠EAF=90°,
    ∵CD=8> CF=6
    ∴点F不可能落在直线AD上
    ∴.不存在∠EAF=90
    综上所述:BE=3或6
    故答案为:3或6
    本题主要考查的是翻折的性质,矩形的性质,正方形的判定和性质,勾股定理,依据题意画出符合题意的图形是解题的关键.
    22、①②③
    【解析】
    利用平行四边形的性质结合勾股定理以及三角形面积求法分别分析得出答案.
    【详解】
    解:①∵在▱ABCD中,AE⊥BC,垂足为E,AE=4,BC=8,
    ∴AD=8,∠EAD=90°,
    ∴DE==,故此选项正确;
    ②∵S△AED=AE•AD
    S四边形ABCD=AE×AD,
    ∴S△AED=S四边形ABCD,故此选项正确;
    ③∵AD∥BC,
    ∴∠ADE=∠DEC,
    ∵AB=5,AE=4,∠AEB=90°,
    ∴BE=3,
    ∵BC=8,
    ∴EC=CD=5,
    ∴∠CED=∠CDE,
    ∴∠ADE=∠CDE,
    ∴DE平分∠ADC,故此选项正确;
    ④当∠AED=∠ADC时,由③可得∠AED=∠EDC,
    故AE∥DC,与已知AB∥DC矛盾,故此选项错误.
    故答案为:①②③.
    此题主要考查了平行四边形的性质以及勾股定理、三角形面积求法等知识,正确应用平行四边形的性质是解题关键.
    23、0
    【解析】
    先变形为,再提取公因式分解因式即可得.然后利用相反数的定义将整体代入即可求解.
    【详解】
    解:
    因为,互为相反数,所以,
    原式

    故答案为:0.
    本题考查了对一个多项式因式分解的灵活运用能力,结合互为相反数的两数和为0,巧求代数式的值.
    二、解答题(本大题共3个小题,共30分)
    24、-1、-1、0、1 、1.
    【解析】
    试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解.
    试题解析:
    解不等式①,得,
    解不等式②,得,
    ∴不等式组的解集为.
    ∴不等式组的整数解为-1、-1、0、1、1.
    考点:解一元一次不等式组.
    25、(1)S=(2) (3)存在,(6,6)或 ,
    【解析】
    (1)当P在AC段时,△BPD的底BD与高为固定值,求出此时面积;当P在BC段时,底边BD为固定值,用t表示出高,即可列出S与t的关系式;
    (2)当点B的对应点B′恰好落在AC边上时,设P(m,10),则PB=PB′=m,由勾股定理得m2=22+(6-m)2,即可求出此时P坐标;
    (3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
    【详解】
    解:(1)∵A,B的坐标分别是(6,0)、(0,10),
    ∴OA=6,OB=10,
    当点P在线段AC上时,OD=2,BD=OB-OD=10-2=8,高为6,
    ∴S=×8×6=24;
    当点P在线段BC上时,BD=8,高为6+10-t=16-t,
    ∴S=×8×(16-t)=-4t+64;
    ∴S与t之间的函数关系式为:;
    (2)设P(m,10),则PB=PB′=m,如图1,
    ∵OB′=OB=10,OA=6,
    ∴AB′==8,
    ∴B′C=10-8=2,
    ∵PC=6-m,
    ∴m2=22+(6-m)2,
    解得m=
    则此时点P的坐标是(,10);
    (3)存在,理由为:
    若△BDP为等腰三角形,分三种情况考虑:如图2,
    ①当BD=BP1=OB-OD=10-2=8,
    在Rt△BCP1中,BP1=8,BC=6,
    根据勾股定理得:CP1=,
    ∴AP1=10−,
    即P1(6,10-),
    ②当BP2=DP2时,此时P2(6,6);
    ③当DB=DP3=8时,
    在Rt△DEP3中,DE=6,
    根据勾股定理得:P3E=,
    ∴AP3=AE+EP3=+2,
    即P3(6,+2),
    综上,满足题意的P坐标为(6,6)或(6,10-),(6,+2).
    本题是四边形综合题,考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理等知识,注意分类讨论思想和方程思想的运用.
    26、(1)证明见解析;(2)矩形,理由见解析;
    【解析】
    (1)根据平行四边形的性质得出BO=DO,AO=OC,求出OE=OF,根据全等三角形的判定定理推出即可;
    (2)根先推出四边形EBFD是平行四边形,再根据矩形的判定得出即可.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴BO=DO,AO=OC,
    ∵AE=CF,
    ∴AO-AE=OC-CF,
    即:OE=OF,
    在△BOE和△DOF中,
    ∴△BOE≌△DOF(SAS);
    (2)矩形,
    证明:∵BO=DO,OE=OF,
    ∴四边形BEDF是平行四边形,
    ∵BD=EF,
    ∴平行四边形BEDF是矩形.
    此题考查平行四边形的性质和判定,全等三角形的判定和矩形的判定,能灵活运用定理进行推理是解题的关键.
    题号





    总分
    得分
    批阅人
    数量x(千克)
    1
    2
    3
    4
    5

    售价y(元)
    2+0.1
    4+0.2
    6+0.3
    8+0.4
    10+0.5

    相关试卷

    2024-2025学年山西省朔州市朔城区四中学九上数学开学复习检测模拟试题【含答案】:

    这是一份2024-2025学年山西省朔州市朔城区四中学九上数学开学复习检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山西省朔州市朔城区第四中学数学九年级第一学期开学联考模拟试题【含答案】:

    这是一份2024-2025学年山西省朔州市朔城区第四中学数学九年级第一学期开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年山西省朔州市朔城区数学九年级第一学期期末达标检测模拟试题含答案:

    这是一份2023-2024学年山西省朔州市朔城区数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了下列事件为必然事件的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map