山西省太原市第五十三中学2025届数学九上开学考试试题【含答案】
展开
这是一份山西省太原市第五十三中学2025届数学九上开学考试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若,则下列各式中,错误的是( )
A.B.C.D.
2、(4分)如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距( )
A.4海里B.海里C.3海里D.5海里
3、(4分)如果三个数a、b、c的中位数与众数都是5,平均数是4,那么b的值为( )
A.2B.4C.5D.5或2
4、(4分)关于函数y=﹣x+3,下列结论正确的是( )
A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限
C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大
5、(4分)如图,矩形纸片中,,将沿折叠,使点落在点处,交于点,则的长等于( )
A.B.C.D.
6、(4分)下列各曲线中,不能表示y是x的函数的是( )
A. B. C. D.
7、(4分)下列命题是假命题的是( )
A.四个角相等的四边形是矩形B.对角线互相平分的四边形是平行四边形
C.四条边相等的四边形是菱形D.对角线互相垂直且相等的四边形是正方形
8、(4分)已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )
A.平均数B.标准差C.中位数D.众数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的方程无解,则m= .
10、(4分)如图,一次函数y=6﹣x与正比例函数y=kx的图象如图所示,则k的值为_____.
11、(4分)若实数a、b满足a2—7a+2=0和b2—7b+2=0,则式子的值是____.
12、(4分)如图,在ABCD中,线段BE、CE分别平分∠ABC和∠BCD,若AB=5,BE=8,则CE的长度为________.
13、(4分)关于x的一次函数,当_________时,它的图象过原点.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知m,n是实数,定义运算“*”为:m*n=mn+n.
(1)分别求4*(﹣2)与4*的值;
(2)若关于x的方程x*(a*x)=﹣有两个相等的实数根,求实数a的值.
15、(8分)因式分解:.
16、(8分)如图,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.
(1)求证:∠FBC=∠CDF;
(2)作点C关于直线DE的对称点G,连接CG,FG,猜想线段DF,BF,CG之间的数量关系,并证明你的结论.
17、(10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:
酒店豪华间有多少间?旺季每间价格为多少元?
18、(10分)如图,AC是平行四边形ABCD的一条对角线,过AC中点O的直线分别交 AD,BC 于点 E,F.
(1)求证:四边形AECF是平行四边形;
(2)当 EF 与 AC 满足什么条件时,四边形 AECF 是菱形?并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是______
20、(4分)某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占,语言表达成绩占,写作能力成绩占,则李丽最终的成绩是______分.
21、(4分)已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(h)变化如图,则当甲车到达B地时,乙车距离B地的距离为_____(km).
22、(4分)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
23、(4分)如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商家在国庆节前购进一批A型保暖裤,十月份将此保暖裤的进价提高40%作为销售价,共获利1000元. 十一月份,商家搞“双十一”促销活动,将此保暖裤的进价提高30%作为促销价,销量比十月份增加了30件,并且比十月份多获利200元. 此保暖裤的进价是多少元?(请列分式方程进行解答)
25、(10分)已知一次函数,.
(1)若方程的解是正数,求的取值范围;
(2)若以、为坐标的点在已知的两个一次函数图象上,求的值;
(3)若,求的值.
26、(12分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若△ABC的面积为4,求的解析式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据不等式性质分析即可解答.
【详解】
解:A、两边都乘以-1,不等号的方向改变,选项变形错误,故A符合题意;
B、两边都减3,不等号的方向不变,故B不符合题意;
C、两边都乘以-2,不等号的方向改变,故C不符合题意;
D、两边都乘以,不等号的方向不变,故D不符合题意;
故选:A.
主要考查了不等式的基本性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
2、B
【解析】
连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.
【详解】
解:如图,连接AC,
由题意得,∠CBA=90°,
∴AC==(海里),
故选B.
本题考查了勾股定理的应用和方向角问题,熟练掌握勾股定理、正确标注方向角是解题的关键.
3、D
【解析】
该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.
【详解】
解:设另一个数为x,
则5+5+x=4×3,
解得x=1,
即b=5或1.
故选D.
本题主要考查众数、中位数、平均数,用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
4、C
【解析】
根据一次函数的性质对各选项进行逐一判断即可.
【详解】
解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;
B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误;
C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;
D、∵k=-1<0,∴y随x的增大而减小,故本选项错误,
故选C.
本题考查了一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.
5、B
【解析】
根据矩形的性质可得AD∥BC,再由平行线及折叠的性质可得∠DAC=∠ACF,得到AF=CF,在Rt△CDF中,运用勾股定理列出方程即可解答.
【详解】
解:∵四边形ABCD是矩形,
∴AD∥BC,∠D=90°,AD=BC=6,DC=AB=4,
∴∠DAC=∠ACB
又∵△AEC是由△ABC折叠而得,
∴∠ACF=∠ACB
∴∠DAC=∠ACF
∴AF=CF
设DF=x,则CF=AF=6-x,
∴在Rt△CDF中,,即
解得:,
即
故答案为:B.
本题考查了矩形中的折叠问题,涉及矩形的性质,等腰三角形的判定以及折叠的性质,勾股定理的运用,解题的关键是根据矩形及折叠的性质得到AF=CF.
6、A
【解析】
试题分析:在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.
解:显然B、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;
A选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;
故选:A.
7、D
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,根据矩形,平行四边形,菱形,正方形的判定定理判断即可.
【详解】
解:A、正确,符合矩形的判定定理;
B、正确,符合平行四边形的判定定理;
C、正确,符合菱形的判定定理;
D、错误,例如对角线互相垂直的等腰梯形.
故选:D.
本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
8、B
【解析】
试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:
设样本A中的数据为xi,则样本B中的数据为yi=xi+2,
则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.
故选B.
考点:统计量的选择.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣8
【解析】
试题分析:∵关于x的方程无解,∴x=5
将分式方程去分母得:,
将x=5代入得:m=﹣8
【详解】
请在此输入详解!
10、1
【解析】
将点A的横坐标代入y=6﹣x可得其纵坐标的值,再将所得点A坐标代入y=kx可得k.
【详解】
解:设A(1,m).
把A (1,m)代入y=6﹣x得:m=﹣1+6=4,
把A (1,4)代入y=kx得4=1k,解得k=1.
故答案是:1.
本题主要考查两条直线相交或平行问题,解题的关键是熟练掌握待定系数法求函数解析式.
11、.
【解析】
由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,可把a,b看成是方程x2-7x+2=0的两个根,再利用根与系数的关系求解即可.
【详解】
解:由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,
∴可把a,b看成是方程x2-7x+2=0的两个根,
∴a+b=7,ab=2,
∴===.
故答案为:.
本题考查了根与系数的关系,属于基础题,根据题意把a,b看成是方程的两个根后根据根与系数的关系求出a+b,ab是解题的关键.
12、6
【解析】
根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到CE即可.
【详解】
解:∵BE和CE分别平分∠ABC和∠BCD,
∴∠ABE=∠EBC,∠DCE=∠ECB,
∵▱ABCD,
∴AB∥CD,AB=CD=5,
∴∠ABC+∠DCB=180°,∠AEB=∠EBC,∠DEC=∠ECB,
∴(∠ABC+∠DCB)=90°,∠ABE=∠AEB,∠DEC=∠DCE,
∴∠EBC+∠ECB=90°,AB=AE=5,CD=DE=AB=5,
∴△EBC是直角三角形,AD=BC=AE+ED=10
根据勾股定理:CE=.
故答案为6
本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
13、
【解析】
由一次函数图像过原点,可知其为正比例函数,所以,求出k值即可.
【详解】
解: 函数图像过原点
该函数为正比例函数
故答案为:
本题考查了一次函数与正比例函数,一次函数,当时,为正比例函数,正比例函数图像过原点,正确理解正比例函数的概念及性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)a=1.
【解析】
(1)利用新定义得到4*(﹣2)=4×(﹣2)+(﹣2);4* =4×+,然后进行实数运算即可;
(2)利用新定义得到x(ax+x)+ax+x=﹣,整理得(a+1)x2+(a+1)x+=1,根据一元二次方程的定义和判别式的意义得到a+1≠1且△=(a+1)2﹣4(a+1)×=1,然后解关于a的方程即可.
【详解】
(1)4*(﹣2)=4×(﹣2)+(﹣2)=﹣8﹣2=﹣11;
4*=4×+=5;
(2)a*x=ax+x,
由x*(ax+x)=﹣得x(ax+x)+ax+x=﹣,
整理得(a+1)x2+(a+1)x+=1,
因为关于x的方程(a+1)x2+(a+1)x+=1有两个相等的实数根,
所以a+1≠1且△=(a+1)2﹣4(a+1)×=1,
所以a=1.
本题考查了根的判别式,实数的运算,解题关键在于掌握运算法则.
15、
【解析】
先提公因式xy,然后再采用公式法进行因式分解.
【详解】
解:原式=.
故答案为:
本题考查因式分解,因式分解的一般步骤为:先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适;熟练的记牢公式是解决此类题的关键.
16、 (1)见解析,(2)BF=CG+DF.理由见解析.
【解析】
(1)由题意可得到∠FBC+∠E=90°,∠CDF+∠E=90°,然后依据余角的性质求解即可;
(2)在线段FB上截取FM,使得FM=FD,然后可证明△BDM∽△CDF,由相似三角形的性质可得到BM=FC,然后证明△CFG为等腰直角三角形,从而可得到CG=CF,然后可得到问题的答案.
【详解】
.解:(1)∵ABCD为正方形,
∴∠DCE=90°.
∴∠CDF+∠E=90°,
又∵BF⊥DE,
∴∠FBC+∠E=90°,
∴∠FBC=∠CDF
(2)如图所示:在线段FB上截取FM,使得FM=FD.
∵∠BDC=∠MDF=45°,
∴∠BDM=∠CDF,
∵ ,
∴△BDM∽△CDF,
∴ ,∠DBM=∠DCF,
∴BM=CF,
∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,
∴∠EFG=∠EFC=45°,
∴∠CFG=90°,
∵CF=FG,
∴CG=CF,
∴BM=CG,
∴BF=BM+FM=CG+DF.
本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
17、该酒店豪华间有50间,旺季每间价格为800元.
【解析】
根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;
【详解】
设淡季每间的价格为x元,酒店豪华间有y间,
,
解得, ,
∴x+13x=600+13×600=800,
答:该酒店豪华间有50间,旺季每间价格为800元;
此题考查二元一次方程组的应用,解题关键在于理解题意列出方程组.
18、(1)见解析;(2)当EF⊥AC时,四边形 AECF 是菱形,理由见解析
【解析】
(1)连接AF,CE,证明△AOE≌△COF,得到AE=CF,利用一组对边平行且相等的四边形是平行四边形;
(2)根据对角线互相垂直的平行四边形是菱形,即可得出结论.
【详解】
(1)如图,连接AF,CE,
∵四边形ABCD是平行四边形
∴AD∥BC
∴∠AEO=∠CFO
又∵点O为AC的中点
∴OA=OC
在△AOE和△COF中,
∵∠AEO=∠CFO,∠AOE=∠COF,OA=OC
∴△AOE≌△COF(AAS)
∴AE=CF
又∵AE∥CF
∴四边形AECF是平行四边形
(2)当EF⊥AC时,四边形 AECF 是菱形,理由如下:
∵四边形AECF是平行四边形,EF⊥AC
∴四边形 AECF 是菱形
本题考查了平行四边形的判定与性质,菱形的判定,熟练掌握平行四边形的判定定理与菱形的判定定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0
相关试卷
这是一份山西省太原市育英中学2024-2025学年九年级数学第一学期开学联考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山西省太原市杏花岭区育英中学2025届九上数学开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山西省太原市名校2024-2025学年九上数学开学统考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。