搜索
    上传资料 赚现金
    英语朗读宝

    山西省太原市第五十三中学2025届数学九上开学考试试题【含答案】

    山西省太原市第五十三中学2025届数学九上开学考试试题【含答案】第1页
    山西省太原市第五十三中学2025届数学九上开学考试试题【含答案】第2页
    山西省太原市第五十三中学2025届数学九上开学考试试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西省太原市第五十三中学2025届数学九上开学考试试题【含答案】

    展开

    这是一份山西省太原市第五十三中学2025届数学九上开学考试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若,则下列各式中,错误的是( )
    A.B.C.D.
    2、(4分)如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距( )
    A.4海里B.海里C.3海里D.5海里
    3、(4分)如果三个数a、b、c的中位数与众数都是5,平均数是4,那么b的值为( )
    A.2B.4C.5D.5或2
    4、(4分)关于函数y=﹣x+3,下列结论正确的是( )
    A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限
    C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大
    5、(4分)如图,矩形纸片中,,将沿折叠,使点落在点处,交于点,则的长等于( )
    A.B.C.D.
    6、(4分)下列各曲线中,不能表示y是x的函数的是( )
    A. B. C. D.
    7、(4分)下列命题是假命题的是( )
    A.四个角相等的四边形是矩形B.对角线互相平分的四边形是平行四边形
    C.四条边相等的四边形是菱形D.对角线互相垂直且相等的四边形是正方形
    8、(4分)已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )
    A.平均数B.标准差C.中位数D.众数
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若关于x的方程无解,则m= .
    10、(4分)如图,一次函数y=6﹣x与正比例函数y=kx的图象如图所示,则k的值为_____.
    11、(4分)若实数a、b满足a2—7a+2=0和b2—7b+2=0,则式子的值是____.
    12、(4分)如图,在ABCD中,线段BE、CE分别平分∠ABC和∠BCD,若AB=5,BE=8,则CE的长度为________.
    13、(4分)关于x的一次函数,当_________时,它的图象过原点.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知m,n是实数,定义运算“*”为:m*n=mn+n.
    (1)分别求4*(﹣2)与4*的值;
    (2)若关于x的方程x*(a*x)=﹣有两个相等的实数根,求实数a的值.
    15、(8分)因式分解:.
    16、(8分)如图,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.
    (1)求证:∠FBC=∠CDF;
    (2)作点C关于直线DE的对称点G,连接CG,FG,猜想线段DF,BF,CG之间的数量关系,并证明你的结论.
    17、(10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:
    酒店豪华间有多少间?旺季每间价格为多少元?
    18、(10分)如图,AC是平行四边形ABCD的一条对角线,过AC中点O的直线分别交 AD,BC 于点 E,F.
    (1)求证:四边形AECF是平行四边形;
    (2)当 EF 与 AC 满足什么条件时,四边形 AECF 是菱形?并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是______
    20、(4分)某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占,语言表达成绩占,写作能力成绩占,则李丽最终的成绩是______分.
    21、(4分)已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(h)变化如图,则当甲车到达B地时,乙车距离B地的距离为_____(km).
    22、(4分)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
    23、(4分)如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某商家在国庆节前购进一批A型保暖裤,十月份将此保暖裤的进价提高40%作为销售价,共获利1000元. 十一月份,商家搞“双十一”促销活动,将此保暖裤的进价提高30%作为促销价,销量比十月份增加了30件,并且比十月份多获利200元. 此保暖裤的进价是多少元?(请列分式方程进行解答)
    25、(10分)已知一次函数,.
    (1)若方程的解是正数,求的取值范围;
    (2)若以、为坐标的点在已知的两个一次函数图象上,求的值;
    (3)若,求的值.
    26、(12分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
    (1)求点B的坐标;
    (2)若△ABC的面积为4,求的解析式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据不等式性质分析即可解答.
    【详解】
    解:A、两边都乘以-1,不等号的方向改变,选项变形错误,故A符合题意;
    B、两边都减3,不等号的方向不变,故B不符合题意;
    C、两边都乘以-2,不等号的方向改变,故C不符合题意;
    D、两边都乘以,不等号的方向不变,故D不符合题意;
    故选:A.
    主要考查了不等式的基本性质:
    (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
    (2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
    (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
    2、B
    【解析】
    连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.
    【详解】
    解:如图,连接AC,
    由题意得,∠CBA=90°,
    ∴AC==(海里),
    故选B.
    本题考查了勾股定理的应用和方向角问题,熟练掌握勾股定理、正确标注方向角是解题的关键.
    3、D
    【解析】
    该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.
    【详解】
    解:设另一个数为x,
    则5+5+x=4×3,
    解得x=1,
    即b=5或1.
    故选D.
    本题主要考查众数、中位数、平均数,用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    4、C
    【解析】
    根据一次函数的性质对各选项进行逐一判断即可.
    【详解】
    解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;
    B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误;
    C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;
    D、∵k=-1<0,∴y随x的增大而减小,故本选项错误,
    故选C.
    本题考查了一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.
    5、B
    【解析】
    根据矩形的性质可得AD∥BC,再由平行线及折叠的性质可得∠DAC=∠ACF,得到AF=CF,在Rt△CDF中,运用勾股定理列出方程即可解答.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AD∥BC,∠D=90°,AD=BC=6,DC=AB=4,
    ∴∠DAC=∠ACB
    又∵△AEC是由△ABC折叠而得,
    ∴∠ACF=∠ACB
    ∴∠DAC=∠ACF
    ∴AF=CF
    设DF=x,则CF=AF=6-x,
    ∴在Rt△CDF中,,即
    解得:,

    故答案为:B.
    本题考查了矩形中的折叠问题,涉及矩形的性质,等腰三角形的判定以及折叠的性质,勾股定理的运用,解题的关键是根据矩形及折叠的性质得到AF=CF.
    6、A
    【解析】
    试题分析:在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.
    解:显然B、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;
    A选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;
    故选:A.
    7、D
    【解析】
    分析是否为真命题,需要分别分析各题设是否能推出结论,根据矩形,平行四边形,菱形,正方形的判定定理判断即可.
    【详解】
    解:A、正确,符合矩形的判定定理;
    B、正确,符合平行四边形的判定定理;
    C、正确,符合菱形的判定定理;
    D、错误,例如对角线互相垂直的等腰梯形.
    故选:D.
    本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    8、B
    【解析】
    试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:
    设样本A中的数据为xi,则样本B中的数据为yi=xi+2,
    则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.
    故选B.
    考点:统计量的选择.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、﹣8
    【解析】
    试题分析:∵关于x的方程无解,∴x=5
    将分式方程去分母得:,
    将x=5代入得:m=﹣8
    【详解】
    请在此输入详解!
    10、1
    【解析】
    将点A的横坐标代入y=6﹣x可得其纵坐标的值,再将所得点A坐标代入y=kx可得k.
    【详解】
    解:设A(1,m).
    把A (1,m)代入y=6﹣x得:m=﹣1+6=4,
    把A (1,4)代入y=kx得4=1k,解得k=1.
    故答案是:1.
    本题主要考查两条直线相交或平行问题,解题的关键是熟练掌握待定系数法求函数解析式.
    11、.
    【解析】
    由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,可把a,b看成是方程x2-7x+2=0的两个根,再利用根与系数的关系求解即可.
    【详解】
    解:由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,
    ∴可把a,b看成是方程x2-7x+2=0的两个根,
    ∴a+b=7,ab=2,
    ∴===.
    故答案为:.
    本题考查了根与系数的关系,属于基础题,根据题意把a,b看成是方程的两个根后根据根与系数的关系求出a+b,ab是解题的关键.
    12、6
    【解析】
    根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到CE即可.
    【详解】
    解:∵BE和CE分别平分∠ABC和∠BCD,
    ∴∠ABE=∠EBC,∠DCE=∠ECB,
    ∵▱ABCD,
    ∴AB∥CD,AB=CD=5,
    ∴∠ABC+∠DCB=180°,∠AEB=∠EBC,∠DEC=∠ECB,
    ∴(∠ABC+∠DCB)=90°,∠ABE=∠AEB,∠DEC=∠DCE,
    ∴∠EBC+∠ECB=90°,AB=AE=5,CD=DE=AB=5,
    ∴△EBC是直角三角形,AD=BC=AE+ED=10
    根据勾股定理:CE=.
    故答案为6
    本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
    13、
    【解析】
    由一次函数图像过原点,可知其为正比例函数,所以,求出k值即可.
    【详解】
    解: 函数图像过原点
    该函数为正比例函数

    故答案为:
    本题考查了一次函数与正比例函数,一次函数,当时,为正比例函数,正比例函数图像过原点,正确理解正比例函数的概念及性质是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)a=1.
    【解析】
    (1)利用新定义得到4*(﹣2)=4×(﹣2)+(﹣2);4* =4×+,然后进行实数运算即可;
    (2)利用新定义得到x(ax+x)+ax+x=﹣,整理得(a+1)x2+(a+1)x+=1,根据一元二次方程的定义和判别式的意义得到a+1≠1且△=(a+1)2﹣4(a+1)×=1,然后解关于a的方程即可.
    【详解】
    (1)4*(﹣2)=4×(﹣2)+(﹣2)=﹣8﹣2=﹣11;
    4*=4×+=5;
    (2)a*x=ax+x,
    由x*(ax+x)=﹣得x(ax+x)+ax+x=﹣,
    整理得(a+1)x2+(a+1)x+=1,
    因为关于x的方程(a+1)x2+(a+1)x+=1有两个相等的实数根,
    所以a+1≠1且△=(a+1)2﹣4(a+1)×=1,
    所以a=1.
    本题考查了根的判别式,实数的运算,解题关键在于掌握运算法则.
    15、
    【解析】
    先提公因式xy,然后再采用公式法进行因式分解.
    【详解】
    解:原式=.
    故答案为:
    本题考查因式分解,因式分解的一般步骤为:先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适;熟练的记牢公式是解决此类题的关键.
    16、 (1)见解析,(2)BF=CG+DF.理由见解析.
    【解析】
    (1)由题意可得到∠FBC+∠E=90°,∠CDF+∠E=90°,然后依据余角的性质求解即可;
    (2)在线段FB上截取FM,使得FM=FD,然后可证明△BDM∽△CDF,由相似三角形的性质可得到BM=FC,然后证明△CFG为等腰直角三角形,从而可得到CG=CF,然后可得到问题的答案.
    【详解】
    .解:(1)∵ABCD为正方形,
    ∴∠DCE=90°.
    ∴∠CDF+∠E=90°,
    又∵BF⊥DE,
    ∴∠FBC+∠E=90°,
    ∴∠FBC=∠CDF
    (2)如图所示:在线段FB上截取FM,使得FM=FD.
    ∵∠BDC=∠MDF=45°,
    ∴∠BDM=∠CDF,
    ∵ ,
    ∴△BDM∽△CDF,
    ∴ ,∠DBM=∠DCF,
    ∴BM=CF,
    ∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,
    ∴∠EFG=∠EFC=45°,
    ∴∠CFG=90°,
    ∵CF=FG,
    ∴CG=CF,
    ∴BM=CG,
    ∴BF=BM+FM=CG+DF.
    本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
    17、该酒店豪华间有50间,旺季每间价格为800元.
    【解析】
    根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;
    【详解】
    设淡季每间的价格为x元,酒店豪华间有y间,

    解得, ,
    ∴x+13x=600+13×600=800,
    答:该酒店豪华间有50间,旺季每间价格为800元;
    此题考查二元一次方程组的应用,解题关键在于理解题意列出方程组.
    18、(1)见解析;(2)当EF⊥AC时,四边形 AECF 是菱形,理由见解析
    【解析】
    (1)连接AF,CE,证明△AOE≌△COF,得到AE=CF,利用一组对边平行且相等的四边形是平行四边形;
    (2)根据对角线互相垂直的平行四边形是菱形,即可得出结论.
    【详解】
    (1)如图,连接AF,CE,
    ∵四边形ABCD是平行四边形
    ∴AD∥BC
    ∴∠AEO=∠CFO
    又∵点O为AC的中点
    ∴OA=OC
    在△AOE和△COF中,
    ∵∠AEO=∠CFO,∠AOE=∠COF,OA=OC
    ∴△AOE≌△COF(AAS)
    ∴AE=CF
    又∵AE∥CF
    ∴四边形AECF是平行四边形
    (2)当EF⊥AC时,四边形 AECF 是菱形,理由如下:
    ∵四边形AECF是平行四边形,EF⊥AC
    ∴四边形 AECF 是菱形
    本题考查了平行四边形的判定与性质,菱形的判定,熟练掌握平行四边形的判定定理与菱形的判定定理是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、0

    相关试卷

    山西省太原市育英中学2024-2025学年九年级数学第一学期开学联考试题【含答案】:

    这是一份山西省太原市育英中学2024-2025学年九年级数学第一学期开学联考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山西省太原市杏花岭区育英中学2025届九上数学开学预测试题【含答案】:

    这是一份山西省太原市杏花岭区育英中学2025届九上数学开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山西省太原市名校2024-2025学年九上数学开学统考试题【含答案】:

    这是一份山西省太原市名校2024-2025学年九上数学开学统考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map