陕西省宝鸡市扶风县2024年数学九年级第一学期开学学业质量监测试题【含答案】
展开这是一份陕西省宝鸡市扶风县2024年数学九年级第一学期开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题中:①两直角边对应相等的两个直角三角形全等;②两锐角对应相等的两个直角三角形全等;③斜边和一直角边对应相等的两个直角三角形全等;④一锐角和斜边对应相等的两个直角三角形全等;⑤一锐角和一边对应相等的两个直角三角形全等.其中正确的个数有( )
A.2个B.3个C.4个D.5个
2、(4分)下列字母中既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
3、(4分)将一张矩形纸片按照如图 所示的方式折叠,然后沿虚线 AB 将阴影部分剪下,再将 剪下的阴影部分纸片展开,所得到的平面图形是( )
A.直角三角形B.等腰三角形C.矩形D.菱形
4、(4分)如图,已知矩形中,与相交于,平分交于,,则的度数为( )
A.B.C.D.
5、(4分)点P(-4,2)关于原点对称点的坐标P’(-2,-2)则等于 ( )
A.6B.-6C.2D.-2
6、(4分)一次函数的图象如图所示,当时,则的取值范围是( )
A.B.C.D.
7、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=58°,则∠CAD的度数是( )
A.22°B.29°C.32D.61°
8、(4分)如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是( )
A.B.
C.或D.或
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个弹簧不挂重物时长10cm,挂上重物后伸长的长度与所挂重物的质量成正比,如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为_____(不需要写出自变量取值范围)
10、(4分)已知菱形一内角为,且平分这个内角的一条对角线长为8,则该菱形的边长__________.
11、(4分)如图,在矩形中,,,是边的中点,点是边上的一动点,将沿折叠,使得点落在处,连接,,当点落在矩形的对称轴上,则的值为______.
12、(4分)如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是12cm2,则AC的长是_____cm.
13、(4分)如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、1.则△ABC的面积是 .
15、(8分)如图,在正方形中,点是对角线上一点,且,过点作交于点,连接.
(1)求证:;
(2)当时,求的值.
16、(8分)先阅读下面的材料,再解答下面的问题:如果两个三角形的形状相同,则称这两个三角形相似.如图1,△ABC与△DEF形状相同,则称△ABC与△DEF相似,记作△ABC∽△DEF.那么,如何说明两个三角形相似呢?我们可以用“两角分别相等的三角形相似”加以说明.用数学语言表示为:
如图1:在△ABC与△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF.
请你利用上述定理解决下面的问题:
(1)下列说法:①有一个角为50°的两个等腰三角形相似;②有一个角为100°的两个等腰三角形相似;③有一个锐角相等的两个直角三角形相似;④两个等边三角形相似.其中正确的是______(填序号);
(2)如图2,已知AB∥CD,AD与BC相交于点O,试说明△ABO∽△DCO;
(3)如图3,在平行四边形ABCD中,E是DC上一点,连接AE.F为AE上一点,且∠BFE=∠C,求证:△ABF∽△EAD.
17、(10分)如图,已知一次函数的图象经过A(0,-3)、B(4,0)两点.
(1)求这个一次函数的解析式;
(2)若过O作OM⊥AB于M,求OM的长.
18、(10分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:
经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.
(1)求a,b的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)小明租用共享单车从家出发,匀速骑行到相距米的图书馆还书.小明出发的同时,他的爸爸以每分钟米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了分钟后沿原路按原速返回.设他们出发后经过(分)时,小明与家之间的距离为(米),小明爸爸与家之间的距离为(米),图中折线、线段分别表示、与之间的函数关系的图象.小明从家出发,经过___分钟在返回途中追上爸爸.
20、(4分)在平面直角坐标系中,正比例函数与反比例函数的图象交于点,则_________.
21、(4分)若式子 有意义,则x的取值范围为___________.
22、(4分)如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处向正东方向行了100米到达B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC=_____米.
23、(4分)如图,在平面直角坐标系中,矩形纸片OABC的顶点A,C分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B′处,折痕交AB于点D.若OC=9,,则折痕CD所在直线的解析式为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形是平行四边形,是边上一点.
(1)只用无刻度直尺在边上作点,使得,保留作图痕迹,不写作法;
(2)在(1)的条件下,若,,求四边形的周长.
25、(10分)将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.
(1)求点G的坐标;
(2)求直线EF的解析式;
(3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.
26、(12分)若点,与点关于轴对称,则__.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据全等三角形的判定定理逐项分析,作出判断即可.
【详解】
解:①两直角边对应相等,两直角相等,所以根据SAS可以判定两直角边对应相等的两个直角三角形全等.故①正确;
②两锐角对应相等的两个直角三角形不一定全等,因为对应边不一定相等.故②错误;
③斜边和一直角边对应相等的两个直角三角形,可以根据HL判定它们全等.故③正确;
④一锐角和斜边对应相等的两个直角三角形,可以根据AAS判定它们全等.故④正确;
⑤一锐角和一边对应相等的两个直角三角形,可以根据AAS或ASA判定它们全等.故⑤正确.
综上所述,正确的说法有4个.
故选:C.
本题考查了直角三角形全等的判定.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.
2、A
【解析】
根据中心对称图形及轴对称图形的概念即可解答.
【详解】
选项A是轴对称图形,也是中心对称图形;
选项B是轴对称图形,不是中心对称图形;
选项C不是轴对称图形,也不是中心对称图形;
选项D不是轴对称图形,是中心对称图形.
故选A.
本题考查了中心对称图形及轴对称图形的概念,熟知中心对称图形及轴对称图形的判定方法是解决问题的关键.
3、D
【解析】
解答该类剪纸问题,通过自己动手操作即可得出答案;或者通过折叠的过程可以发现:该四边形的对角线互相垂直平分,继而进行判断.
【详解】
解:易得阴影部分展开后是一个四边形,
∵四边形的对角线互相平分,
∴是平行四边形,
∵对角线互相垂直,
∴该平行四边形是菱形,
故选:D.
本题主要考查了剪纸问题,学生的分析能力,培养学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
4、B
【解析】
因为DE平分∠ADC,可证得△ECD为等腰直角三角形,得EC=CD, 因为∠BDE=15°,可求得∠CDO=60°,易证△CDO为等边三角形,等量代换可得CE=CO,即∠COE=∠CEO,而∠ECO=30°,利用三角形内角和为180°,即可求得∠COE=75°.
【详解】
解:∵四边形ABCD为矩形,且DE平分∠ADC,
∴∠CDE=∠CED=45,即△ECD为等腰直角三角形,
∴CE=CD,
∵∠BDE=15°,
∴∠CDO=45°+15°=60°,
∵OD=OC,
∴△CDO为等边三角形,即OC=OD=CD,
∴CE=OC,
∴∠COE=∠CEO,
而∠OCE=90°-60°=30°,
∴∠COE=∠CEO==75°.
故选B.
本题考查三角形与矩形的综合,难度一般,熟练掌握矩形的性质是顺利解题的关键.
5、A
【解析】
根据关于原点对称的点的坐标特点进行求解.
【详解】
解:∵点P(a-4,2)关于原点对称的点的坐标P′(-2,-2),
∴a-4=2,
∴a=6,
故选:A.
本题考查了关于原点对称的点的坐标特点,关键是熟记关于原点对称的点的横纵坐标都变为相反数.
6、C
【解析】
函数经过点(0,3)和(1,-3),根据一次函数是直线,且这个函数y随x的增大而减小,即可确定.
【详解】
解:函数经过点(0,3)和(1,-3),则当-3<y<3时,x的取值范围是:0<x<1.
故选:C.
认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.
7、B
【解析】
只要证明OA=OD,根据三角形的外角的性质即可解决问题.
【详解】
∵四边形ABCD是矩形,
∴OA=OD,
∴∠OAD=∠ODA,
∵∠COD=∠CAD+∠ODA=58°,
∴∠CAD=29°
故选B.
本题考查矩形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
8、C
【解析】
先根据正方形的性质求出BD、BC的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.
【详解】
四边形OABC是正方形,
由题意,分以下两种情况:
(1)如图,把逆时针旋转,此时旋转后点B的对应点落在y轴上,旋转后点D的对应点落在第一象限
由旋转的性质得:
点的坐标为
(2)如图,把顺时针旋转,此时旋转后点B的对应点与原点O重合,旋转后点D的对应点落在x轴负半轴上
由旋转的性质得:
点的坐标为
综上,旋转后点D的对应点的坐标为或
故选:C.
本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=3x+1
【解析】
根据题意可知,弹簧总长度y(cm)与所挂物体质量x(kg)之间符合一次函数关系,可设y=kx+1.代入求解.
【详解】
弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为y=3x+1,
故答案为y=3x+1
此题考查根据实际问题列一次函数关系式,解题关键在于列出方程
10、8
【解析】
根据已知可得该对角线与菱形的一组邻边构成一个等边三角形,从而可求得菱形的边长.
【详解】
菱形的一个内角为120°,则邻角为60°
则这条对角线和一组邻边组成等边三角形,
可得边长为8cm.
故答案为8.
此题考查菱形的性质,对角线与菱形的一组邻边构成一个等边三角形是解题关键
11、2
【解析】
根据旋转的性质在三角形EHG中,利用30°角的特殊性得到∠EGH=30°,再利用对称性进行解题即可.
【详解】
解:如下图过点E作EH垂直对称轴与H,连接BG,
∵,,
∴BE=EG=1,EH=,
∴∠EGH=30°,
∴∠BEG=30°,
由旋转可知∠BEF=15°,BG⊥EF,
∴∠EBG=75°,∠GBF=∠BCG=15°,即
∴m=2
故答案是:2
本题考查了图形旋转的性质,中垂线的性质,直角三角形中30°的特殊性,熟悉30°角的特殊性是解题关键.
12、
【解析】
证Rt△AED≌Rt△AFB,推出S△AED=S△AFB,根据四边形ABCD的面积是24cm2得出正方形AFCE的面积是12cm2,求出AE、EC的长,根据勾股定理求出AC即可.
【详解】
解:∵四边形AFCE是正方形,
∴AF=AE,∠E=∠AFC=∠AFB=90°,
∵在Rt△AED和Rt△AFB中
,
∴Rt△AED≌Rt△AFB(HL),
∴S△AED=S△AFB,
∵四边形ABCD的面积是12cm2,
∴正方形AFCE的面积是12cm2,
∴AE=EC=(cm),
根据勾股定理得:AC=,
故答案为:.
本题考查了全等三角形的性质和判定,正方形性质,勾股定理等知识点的应用.关键是求出正方形AFCE的面积.
13、1.
【解析】
根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.
【详解】
解:y=x-4,
当y=0时,x-4=0,
解得:x=4,
即OA=4,
过B作BC⊥OA于C,
∵△OAB是以OA为斜边的等腰直角三角形,
∴BC=OC=AC=2,
即B点的坐标是(2,2),
设平移的距离为a,
则B点的对称点B′的坐标为(a+2,2),
代入y=x-4得:2=(a+2)-4,
解得:a=4,
即△OAB平移的距离是4,
∴Rt△OAB扫过的面积为:4×2=1,
故答案为:1.
本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、64
【解析】
试题分析:根据平行可得三个三角形相似,再由它们的面积比等于相似比的平方,设其中一边为一求未知数,然后计算出最大的三角形与最小的三角形的相似比,从而求面积比.
【详解】
如图,
,
过M作BC的平行线交AB,AC于D,E,过M作AC平行线交AB,BC于F,H,过M作AB平行线交AC,BC于I,G,
根据题意得,△1∽△2∽△3,
∵S△1:S△2=1:4,S△1:S△3=1:1,
∴DM:EM:GH=1:2:5,
又∵四边形BDMG与四边形CEMH为平行四边形,
∴DM=BG,EM=CH,
设DM为x,
则BC=BG+GH+CH=x+5x+2x=8x,
∴BC:DM=8:1,
∴S△ABC:S△FDM=64:1,
∴S△ABC=1×64=64,
故答案为:64.
15、 (1)详见解析;(2)
【解析】
(1)连接CF,利用HL证明Rt△CDF≌Rt△CEF,可得DF=EF,再根据等腰直角三角形可得EF=AF,所以得出DF=AE.
(2) 过点E作EH⊥AB于H,利用勾股定理求出AC,再求出AE,根据特殊直角三角形的边长比求出EH和AH,可得BH,再利用勾股定理求出BE2即可.
【详解】
(1)连接CF,
∵∠D=∠CEF=90°,CD=CE,CF=CF,
∴Rt△CDF≌Rt△CEF(HL),
∴DF=EF,
∵AC为正方形ABCD的对角线,
∴∠CAD=45°,
∴△AEF为等腰直角三角形,
∴EF=AF,
∴DF=AE.
(2) ∵AB=2+,
∴由勾股定理得AC=2+2,
∵CE=CD,
∴AE=.
过点E作EH⊥AB于H,则△AEH是等腰直角三角形.
∴EH=AH=AE=×=1.
∴BH=2+-1=1+.
在Rt△BEH中,BE2=BH2+EH2=(1+)2+12=4+2.
本题考查正方形的性质、三角形全等的性质和判定,关键在于熟练掌握基础知识灵活运用.
16、(1)②③④;(2)见解析;(3)见解析
【解析】
(1)由于50°的角可作为等腰三角形的顶角,也可以作为底角,由此可判断①;而100°的角只能作为等腰三角形的顶角,故可判断②;根据直角三角形的性质可判断③;根据等边三角形的性质可判断④,进而可得答案;
(2)根据平行线的性质和材料提供的方法解答即可;
(3)根据平行四边形的性质和平行线的性质可得∠BAE=∠AED,∠D+∠C=180°,然后根据已知和补角的性质可得∠D=∠AFB,进而可得结论.
【详解】
解:(1)①由于50°的角可作为等腰三角形的顶角,也可以作为底角,所以有一个角为50°的两个等腰三角形不一定相似,所以①错误;
②由于100°的角只能作为等腰三角形的顶角,所以有一个角为100°的两个等腰三角形一定相似,所以②正确;
③有一个锐角相等的两个直角三角形一定相似,所以③正确;
④两个等边三角形一定相似,所以④正确.
故答案为②③④;
(2)∵AB∥CD,∴∠A=∠D,∠B=∠C,
∴△ABO∽△DCO;
(3)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠BAE=∠AED,∠D+∠C=180°,
∵∠AFB+∠BFE=180°,∠BFE=∠C,
∴∠D=∠AFB,
∴△ABF∽△EAD.
本题以阅读理解的形式考查了平行线的性质、平行四边形的性质和相似三角形的判定,解题的关键是正确理解题意、熟练掌握上述基本知识.
17、(1)y=x-3;(2)OM=.
【解析】
(1)设一次函数的解析式为y=kx+b,用待定系数法求解即可;
(2)先根据勾股定理求出AB的长,再用等面积法求解即可.
【详解】
(1)设一次函数的解析式为y=kx+b,
把A(0,-3)、B(4,0)两点代入y=kx+b得:
,
解得,
故一次函数的解析式y=x-3;
(2)在△OAB中,OB=4,OA=3,由勾股定理得AB2=OA2+OB2,即AB2=32+42,
则AB=5,
∵= AB×OM =OA×OB,
即OM==.
本题考查了待定系数法求一次函数解析式,勾股定理及等积法求线段的长,熟练掌握待定系数法是解答本题的关键.
18、(1);(2)有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台;④A型设备1台,B型设备7台;(1)为了节约资金,应选购A型设备2台,B型设备8台.
【解析】
(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元,可列方程组求解. (2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式. (1)利用每月要求处理污水量不低于1880吨,可列不等式求解.
【详解】
解:(1)根据题意得:,
解得:;
(2)设购买污水处理设备A型设备x台,B型设备(10-x)台,根据题意得,
12x+9(10-x)≤100,
∴x≤,
∵x取非负整数,
∴x=0,1,2,1
∴10-x=10,9,8,7
∴有四种购买方案:
①A型设备0台,B型设备10台;
②A型设备1台,B型设备9台;
③A型设备2台,B型设备8台.
④A型设备1台,B型设备7台;
(1)由题意:220x+180(10-x)≥1880,
∴x≥2,
又∵x≤,
∴x为2,1.
当x=2时,购买资金为12×2+9×8=96(万元),
当x=1时,购买资金为12×1+9×7=99(万元),
∴为了节约资金,应选购A型设备2台,B型设备8台.
本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
用路程除以时间就是小亮骑自行车的速度;设小亮从家出发,经过x分钟,在返回途中追上爸爸,再由题意得出等量关系除了小亮在图书馆停留2分钟,即x-2分钟所走的路程减去小亮从家到图书馆相距的2400米,就是小亮在返回途中追上爸爸时,爸爸所走的路程,列出方程即可解答出来
【详解】
解:小亮骑自行车的速度是2400÷10=240m/min;
先设小亮从家出发,经过x分钟,在返回途中追上爸爸,由题意可得:
(x-2)×240-2400=96x
240x-240×2-2400=96x
144x=2880
x=1.
答:小亮从家出发,经过1分钟,在返回途中追上爸爸.
此题考查一次函数的实际运用,根据图象,找出题目蕴含的数量关系,根据速度、时间、路程之间关系解决问题.
20、
【解析】
把代入可得:解得得,再把代入,即,解得.
【详解】
解:把代入可得:
解得,
∴
∵点也在图象上,
把代入,
即,
解得.
故答案为:8
本题考查了一次函数和反比例函数,掌握待定系数法求解析式是关键.
21、x≥5
【解析】
根据二次根式的性质,即可求解.
【详解】
因为式子有意义,
可得:x-5≥1,
解得:x≥5,
故选A.
主要考查了二次根式的意义.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于1.
22、50
【解析】
在图中两个直角三角形中,先根据已知角的正切函数,分别求出AC和BC,根据它们之间的关系,构建方程解答.
【详解】
由已知得,在Rt△PBC中,∠PBC=60°,PC=BCtan60°=BC,
在Rt△APC中,∠PAC=30°,AC=PC=3BC=100+BC,
解得,BC=50,
∴PC=50(米),
答:灯塔P到环海路的距离PC等于50米.
故答案为:50
此题考查的知识点是解直角三角形的应用,关键明确解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
23、y=x+9.
【解析】
根据OC=9,先求出BC的长,继而根据折叠的性质以及勾股定理的性质求出OB′的长,求得AB′的长,设AD=m,则B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的长,进而求得点D的坐标,再利用待定系数法进行求解即可.
【详解】
∵OC=9,,
∴BC=15,
∵四边形OABC是矩形,
∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,
∴C(0,9),
∵折叠,
∴B′C=BC=15,B′D=BD,
在Rt△COB′中,OB′==12,
∴AB′=15-12=3,
设AD=m,则B′D=BD=9-m,
Rt△AB′D中,AD2+B′A2=B′D2,
即m2+32=(9-m)2,
解得m=4,
∴D(15,4)
设CD所在直线解析式为y=kx+b,
把C、D两点坐标分别代入得:,
解得:,
∴CD所在直线解析式为y=x+9,
故答案为:y=x+9.
本题考查了矩形的性质,折叠的性质,勾股定理,待定系数法求一次函数的解析式,求出点D的坐标是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)1.
【解析】
(1)如图,连接,交于点,作直线交于点,点即为所求;
(2)求出,即可解决问题.
【详解】
(1)如图,点即为所求;
(2),,
,
,
,
,
四边形是平行四边形,
,,
平行四边形的周长为1.
本题考查作图——复杂作图,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题.
25、(1)G点的坐标为:(3,4-);(2)EF的解析式为:y=x+4-2;(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)
【解析】
分析:(1)点G的横坐标与点N的横坐标相同,易得EM为BC的一半减去1,为1,EG=CE=2,利用勾股定理可得MG的长度,4减MG的长度即为点G的纵坐标;
(2)由△EMG的各边长可得∠MEG的度数为60°,进而可求得∠CEF的度数,利用相应的三角函数可求得CF长,4减去CF长即为点F的纵坐标,设出直线解析式,把E,F坐标代入即可求得相应的解析式;
(3)以点F为圆心,FG为半径画弧,交直线EF于两点;以点G为圆心,FG为半径画弧,交直线EF于一点;做FG的垂直平分线交直线EF于一点,根据线段的长度和与坐标轴的夹角可得相应坐标.
详解:(1)易得EM=1,CE=2,
∵EG=CE=2,
∴MG=,
∴GN=4-;
G点的坐标为:(3,4-);
(2)易得∠MEG的度数为60°,
∵∠CEF=∠FEG,
∴∠CEF=60°,
∴CF=2,
∴OF=4-2,
∴点F(0,4-2).
设EF的解析式为y=kx+4-2,
易得点E的坐标为(2,4),
把点E的坐标代入可得k=,
∴EF的解析式为:y=x+4-2.
(3)P1(1,4-)、P2(,7-2),
P3(-,2-1)、P4(3,4+)
点睛:本题综合考查了折叠问题和相应的三角函数知识,难点是得到关键点的坐标;注意等腰三角形的两边相等有多种不同的情况.
26、
【解析】
直接利用关于x轴对称点的性质得出a的值进而得出答案.
【详解】
解:点,与点关于轴对称,
.
故答案为:.
此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.
题号
一
二
三
四
五
总分
得分
A型
B型
价格(万元/台)
a
b
处理污水量(吨/月)
220
180
相关试卷
这是一份陕西省宝鸡市名校2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届陕西宝鸡市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年陕西省宝鸡市扶风县九年级数学第一学期开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。