陕西省宝鸡市清姜路中学2024年数学九年级第一学期开学质量检测试题【含答案】
展开
这是一份陕西省宝鸡市清姜路中学2024年数学九年级第一学期开学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在下面的汽车标志图形中,是中心对称图形但不是轴对称图形有( )
A.2 个 B.3个 C.4个 D.5个
2、(4分)一个多边形的边数增加2条,则它的内角和增加( )
A.180°B.90°C.360°D.540°
3、(4分)为了解某社区居民的用水情况,随机抽取20户居民进行调查,下表是所抽查居民2018年5月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是( )
A.中位数是10(吨)B.众数是8(吨)
C.平均数是10(吨)D.样本容量是20
4、(4分)在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是( )
A.y=2x+1B.y=2x﹣1C.y=2x+2D.y=2x﹣2
5、(4分)在下列图案中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
6、(4分)下列二次根式中,与是同类二次根式的是
A.B.C.D.
7、(4分)点P (2,5)经过某种图形变化后得到点Q(﹣2,5),这种图形变化可以是( )
A.关于x轴对称B.关于y轴对称
C.关于原点对称D.上下平移
8、(4分)某校八年级有452名学生,为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计.在这个问题中,样本是( )
A.452名学生B.抽取的50名学生
C.452名学生的课外阅读情况D.抽取的50名学生的课外阅读情况
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.
10、(4分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为_____.
11、(4分)如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
12、(4分)如图,在△ABC中,AC=BC=9,∠C=120°,D为AC边上一点,且AD=6,E是AB边上一动点,连接DE,将线段DE绕点D逆时针旋转30°得到DF,若F恰好在BC边上,则AE的长为_____.
13、(4分)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:,其中.
15、(8分)如图,在△ABC中,AB=AC,点,在边上,.求证:.
16、(8分)解方程:
(1)x2-4x=3
(2)x2-4=2(x+2)
17、(10分)在学校组织的八年级知识竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将一班和二班的成绩整理并绘制成如下的统计图:
请你根据以上提供的信息解答下列问题:
(1)求一班参赛选手的平均成绩;
(2)此次竞赛中,二班成绩在级以上(包括级)的人数有几人?
(3)求二班参赛选手成绩的中位数.
18、(10分)如图,矩形ABCD 和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.
(1)求证:;
(2)求证:;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.
20、(4分)如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B的坐标是_____.
21、(4分)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为 .
22、(4分)在结束了初中阶段数学内容的新课教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则唐老师安排复习“统计与概率”内容的时间为______课时.
23、(4分)若有意义,则的取值范围是_______
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组,并将解集在数轴上表示出来.
25、(10分)先化简,再求值:,其中x=.
26、(12分)计算:9-7+5.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】第2个、第5个是中心对称图形,不是轴对称图形,共2个故选B.
2、C
【解析】
根据n边形的内角和定理即可求解.
【详解】
解:原来的多边形的边数是n,则新的多边形的边数是n+1.
(n+1﹣1)•180﹣(n﹣1)•180=360°.
故选:C.
本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度.
3、A
【解析】
根据中位数、众数、平均数和样本容量的定义对各选项进行判断.
【详解】
解:这组数据的中位数为8(吨),众数为8(吨),平均数=(1×4+2×5+8×8+6×12+2×15+1×1)=10(吨),样本容量为1.
故选:A.
本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数和中位数.
4、C
【解析】
试题分析:函数图像的平移法则为:上加下减,左加右减,则直线y=2x向左平移1个单位后的直线解析式为:y=2(x+1)=2x+2.
5、C
【解析】
根据轴对称图形与中心对称图形的概念进行判断即可.
【详解】
A.不是轴对称图形,是中心对称图形,不合题意;
B.是轴对称图形,不是中心对称图形,不合题意;
C.是轴对称图形,也是中心对称图形,符合题意;
D.不是轴对称图形,是中心对称图形,不合题意,
故选C.
本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、D
【解析】
首先把四个选项中的二次根式化简,再根据同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式可得答案.
【详解】
解:A、与不是同类二次根式;
B、与不是同类二次根式;
C、与不是同类二次根式;
D、与是同类二次根式;
故选:D.
此题主要考查了同类二次根式,关键是掌握同类二次根式的定义.
7、B
【解析】
根据平面内两点关于y轴对称的点,横坐标互为相反数,纵坐标不变从而得出结论
【详解】
∵点P (2,5)经过某种图形变化后得到点Q(﹣2,5),
∴这种图形变化可以是关于y轴对称.
故选B.
此题主要考查平面内两点关于y轴对称的点坐标特征
8、D
【解析】
根据样本是总体中所抽取的一部分个体,可得答案.
【详解】
解:为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计,在这个问题中,样本是从中抽取的50名学生的课外阅读情况.
故选:D.
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(2,−2)或(6,2).
【解析】
设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.
【详解】
∵一次函数解析式为线y=-x+4,
令x=0,解得y=4
∴B(0,4),
令y=0,解得x=4
∴A(4,0),
如图一,∵四边形OADC是菱形,
设C(x,-x+4),
∴OC=OA=,
整理得:x2−6x+8=0,
解得x1=2,x2=4,
∴C(2,2),
∴D(6,2);
如图二、如图三,∵四边形OADC是菱形,
设C(x,-x+4),
∴AC=OA=,
整理得:x2−8x+12=0,
解得x1=2,x2=6,
∴C(6,−2)或(2,2)
∴D(2,−2)或(−2,2)
∵D是y轴右侧平面内一点,故(−2,2)不符合题意,
故答案为(2,−2)或(6,2).
本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.
10、6cm
【解析】
根据题意画出图形,然后可以发现新的三角形的三条边为原三角形的三条中位线,运用中位线即可快速作答.
【详解】
解::如图,D,E,F分别是△ABC的三边的中点,
则DE=AC,DF=BC,EF=AB.
∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm.
本题的关键在于画出图形,对于许多几何题,试题本身没有图,画出图形可以帮助思维,利用寻找解题思路.
11、③
【解析】
分析: 根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.
详解:∵BD=CD,DE=DF,
∴四边形BECF是平行四边形,
①BE⊥EC时,四边形BECF是矩形,不一定是菱形;
②AB=AC时,∵D是BC的中点,
∴AF是BC的中垂线,
∴BE=CE,
∴平行四边形BECF是菱形.
③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;
故答案是:②.
点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:
①定义;②四边相等;③对角线互相垂直平分.
12、3+
【解析】
由,可知,又有,联想一线三等角模型,延长到,使,得,进而可得,,由于,即可得是直角三角形,易求,由即可解题.
【详解】
解:如图,延长到,使,连接,
,,
,,
,
又,
,
在和中,
,
,,
,
,
设,则,由得:
,
解得,(不合题意舍去),
,
,
故答案为:.
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质和等腰直角三角形的性质.本题解题关键是通过一线三等角模型构造全等三角形,从而得到.
13、
【解析】
根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.
【详解】
设AP,EF交于O点,
∵四边形ABCD为菱形,
∴BC∥AD,AB∥CD.
∵PE∥BC,PF∥CD,
∴PE∥AF,PF∥AE.
∴四边形AEFP是平行四边形.
∴S△POF=S△AOE.
即阴影部分的面积等于△ABC的面积.
∵△ABC的面积等于菱形ABCD的面积的一半,
菱形ABCD的面积=ACBD=5,
∴图中阴影部分的面积为5÷2=.
三、解答题(本大题共5个小题,共48分)
14、;
【解析】
首先将括号里面的分式进行通分,然后将各分式的分子和分母进行因式分解,然后进行乘除法计算,最后将a的值代入化简后的式子进行计算.
【详解】
解:原式=
当a=时,原式=.
本题考查分式的化简求值.
15、见解析
【解析】
试题分析:证明△ABE≌△ACD 即可.
试题解析:法1:
∵AB=AC,
∴∠B=∠C,
∵AD=CE,
∴∠ADE=∠AED,
∴△ABE≌△ACD,
∴BE=CD ,
∴BD=CE,
法2:如图,作AF⊥BC于F,
∵AB=AC,
∴BF=CF,
∵AD=AE,
∴DF=EF,
∴BF-DF=CF-EF,
即BD=CE.
16、(1)x1=, x2= (2)x1=-2,x2=4
【解析】
(1)观察方程的特点:二次项系数为1,一次项系数为4,因此利用配方法解方程;
(2)观察方程的左边可以利用平方差公式分解因式,此时方程两边都含有公因式(x+2),因此利用因式分解法解方程.
【详解】
(1)解:配方得,
x2-4x+4=3+4
(x-2)2=7
解之:x-2=±
∴x1=, x2=;
(2)解:(x+2)(x-2)-2(x+2)=0
(x+2)(x-2-2)=0
∴x+2=0或x-4=0
解之:x1=-2,x2=4.
本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.
17、(1)分;(2)人;(3)80分
【解析】
(1)根据算术平均数的定义列式计算可得;
(2)总人数乘以A、B、C等级所占百分比即可;
(3)根据中位数的定义求解即可.
【详解】
解:(1)一班参赛选手的(分)
(2)二班成绩在级以上(含级)(人)
(3)二班、人数占,
参赛学生共有20人,因此中位数落在C级,
二班参赛选手成绩的中位数为80分.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
18、(1)详见解析;(2)详见解析.
【解析】
(1)根据题意可先证明四边形AHCE为平行四边形,再根据正方形的性质得到∴,,故可证明四边形AHGF是平行四边形,即可求解;
(2)根据四边形AHGF是平行四边形,得,根据四边形ABCD是矩形,可得 ,再根据平角的性质及等量替换即可证明.
【详解】
(1)证明:∵四边形ABCD是矩形,且E、H分别为AD、BC的中点,
∴,,
∴四边形AHCE为平行四边形,
∴,,
又∵四边形ECGF为正方形,
∴,,
∴,,
∴四边形AHGF是平行四边形,
∴;
(2)证明:∵四边形AHGF是平行四边形,
∴,
∵四边形ABCD是矩形,
∴,
∴,
又∵,
∴;
此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.
【详解】
根据图象可知 位于线段BC上,
设线段BC的解析式为
将代入解析式中得
解得
∴线段BC解析式为 ,
当时,,
∴乘坐该出租车8(千米)需要支付的金额为1元.
故答案为:1.
本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.
20、(﹣1,0).
【解析】
根据点B与点A关于直线x=1对称确定点B的坐标即可.
【详解】
∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,
∴点A与点B关于直线x=1对称,
而对称轴是直线x=1,点A的坐标为(3,0),
∴点B的坐标是(﹣1,0).
故答案为(﹣1,0).
本题考查了二次函数的对称性,熟知二次函数的图象关于对称轴对称是解决问题的关键.
21、55°或35°.
【解析】
试题分析:①若E在AD上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=55°;
②若E在AD的延长线上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠EDB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=35°.故答案为55°或35°.
考点:1.平行四边形的性质;2.分类讨论.
22、1
【解析】
先计算出“统计与概率”内容所占的百分比,再乘以10即可.
【详解】
解:依题意,得(1-45%-5%-40%)×10=10%×10=1.
故答案为1.
本题考查扇形统计图及相关计算.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
23、
【解析】
根据二次根式有意义的条件:被开方数为非负数求解即可.
【详解】
解:代数式有意义,
,
解得:.
故答案为:.
本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.
二、解答题(本大题共3个小题,共30分)
24、不等式组的解集是﹣1<x≤3.
【解析】
分析:根据不等式组分别求出x的取值,然后画出数轴,在数轴上找出公共部分就是该不等式的解集.
详解:
由①得:x≤3,
由②得:x>﹣1,
∴不等式组的解集是﹣1<x≤3,
在数轴上表示不等式组的解集为:
.
点睛:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,根据口诀:大小小大中间找确定不等式组的解集,由“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.
25、,
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
【详解】
解:原式=
=
=
=.
当x=时,
原式==.
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
26、15
【解析】
先化简再计算,,,代入原式即可得出结果;
【详解】
解:原式,
.
本题主要考查了二次根式的加减运算,无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.
题号
一
二
三
四
五
总分
得分
批阅人
居民(户数)
1
2
8
6
2
1
月用水量(吨)
4
5
8
12
15
20
相关试卷
这是一份陕西省宝鸡市渭滨区清姜路中学2025届九上数学开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年陕西省宝鸡市渭滨区清姜路中学九年级数学第一学期期末达标测试试题含答案,共8页。试卷主要包含了下列命题正确的是,若不等式组无解,则的取值范围为等内容,欢迎下载使用。
这是一份陕西省宝鸡市清姜路中学2023-2024学年八年级数学第一学期期末考试试题含答案,共7页。试卷主要包含了下列四个数中,是无理数的有等内容,欢迎下载使用。