终身会员
搜索
    上传资料 赚现金

    陕西省咸阳市乾县2024年数学九上开学综合测试试题【含答案】

    立即下载
    加入资料篮
    陕西省咸阳市乾县2024年数学九上开学综合测试试题【含答案】第1页
    陕西省咸阳市乾县2024年数学九上开学综合测试试题【含答案】第2页
    陕西省咸阳市乾县2024年数学九上开学综合测试试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省咸阳市乾县2024年数学九上开学综合测试试题【含答案】

    展开

    这是一份陕西省咸阳市乾县2024年数学九上开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)不能判断四边形ABCD是平行四边形的是( )
    A.AB∥CD,AD∥BCB.AB=CD,AD=BC
    C.AB=CD,AB∥CDD.AB=CD,AD∥BC
    2、(4分)下列说法正确的是( )
    A.全等的两个图形成中心对称
    B.成中心对称的两个图形必须能完全重合
    C.旋转后能重合的两个图形成中心对称
    D.成中心对称的两个图形不一定全等
    3、(4分)平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是( )
    A.矩形B.菱形C.正方形D.平行四边形
    4、(4分)如图,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CE,CF,EF,则以下四个结论一定正确的是()
    ①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE
    A.只有①②B.只有①②③
    C.只有③④D.①②③④
    5、(4分)下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是( )
    A.96B.86C.68D.52
    6、(4分)不等式2x-1≤3的解集是( )
    A.x≤1B.x≤2C.x≥1D.x≤-2
    7、(4分)观察下列等式:,,,,,…,那么的个位数字是( )
    A.0B.1C.4D.5
    8、(4分)直线与轴的交点坐标为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=__.
    10、(4分)计算:=_____________.
    11、(4分)设的整数部分为,小数部分为,则的值等于________.
    12、(4分)直线y=﹣3x+5与x轴交点的坐标是_____.
    13、(4分)如图,在菱形中,过点作交对角线于点,且,则_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知四边形ABCD,请你作出一个新图形,使新图形与四边形ABCD的相似比为2:1,用圆规、直尺作图,不写作法,但要保留作图痕迹.
    15、(8分)在平行四边形中,的垂直平分线分别交于两点,交于点,试判断四边形的形状,并说明理由.
    16、(8分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:
    (1)画出将△ABC向上平移3个单位后得到的△A1B1C1;
    (2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.
    17、(10分)(1)分解因式:a(a﹣b)﹣b(a﹣b);(2)已知x+2y=4,求3x2+12xy+12y2的值.
    18、(10分)如图,在正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折得到△AFE,延长EF交边BC于点G,连结AG、CF.
    (1)求证:△ABG≌△AFG;
    (2)判断BG与CG的数量关系,并证明你的结论;
    (3)作FH⊥CG于点H,求GH的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若数据,,…,的方差为6,则数据,,…,的方差是______.
    20、(4分)若二次根式有意义,则的取值范围是______________.
    21、(4分)在直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3,…,则等边△A2017A2018B2018的边长是_____.
    22、(4分)解关于x的方程产生增根,则常数m的值等于________.
    23、(4分)已知,,,若,则可以取的值为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,直线与x轴相交于点A,与直线相交于点P.
    (1)求点P的坐标.
    (2)请判断△OPA的形状并说明理由.
    (3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.求S与t之间的函数关系式.
    25、(10分)知y+3与5x+4成正比例,当x=1时,y=—18,
    (1)求y关于x的函数关系。
    (2)若点(m,—8)在此图像上,求m的值。
    26、(12分)如图是某汽车行驶的路程s(km)与时间t(分钟) 的函数关系图.观察图中所提供的信息,解答下列问题:
    (1)求汽车在前9分钟内的平均速度.
    (2)汽车在中途停留的时间.
    (3)求该汽车行驶30千米的时间.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    A、B、C都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.
    【详解】
    解:根据平行四边形的判定:A、B、C可判定为平行四边形,而C不具备平行四边形的条件,
    A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形),满足;
    B、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形),满足;
    C、∵AB=CD,AB∥CD, ∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),满足;
    D、∵AB=CD,AD∥BC,∴四边形ABCD是等腰梯形,不一定是平行四边形,不满足;
    故选:D.
    本题考查了平行四边形的判定方法;熟练掌握平行四边形的判定方法,并能进行推理论证是解决问题的关键.
    2、B
    【解析】
    根据中心对称图形的概念,即可求解.
    【详解】
    解:A、成中心对称的两个图形全等,但全等的两个图形不一定成中心对称,故错误;
    B、成中心对称的两个图形必须能完全重合,正确;
    C、旋转180°能重合的两个图形成中心对称,故错误;
    D、成中心对称的两个图形一定全等,故错误.
    故选:B.
    本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
    3、B
    【解析】
    在平面直角坐标系中,根据点的坐标画出四边形ABCD,再根据对角线互相垂直的平行四边形是菱形得出四边形ABCD是菱形.
    【详解】
    解:如图所示:
    ∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),
    ∴OA=OC,OB=OD,
    ∴四边形ABCD为平行四边形,
    ∵BD⊥AC,
    ∴四边形ABCD为菱形,
    故选B.
    本题考查了菱形的判定,坐标与图形性质,掌握菱形的判定方法利用数形结合是解题的关键.
    4、B
    【解析】
    根据题意,结合图形,对选项一一求证,判定正确选项.
    【详解】
    解:在□ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
    ∵△ABE、△ADF都是等边三角形,
    ∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
    ∴DF=BC,CD=BC,
    ∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
    ∠EBC=360°-∠ABC-60°=300°-∠ABC,
    ∴∠CDF=∠EBC,
    在△CDF和△EBC中,
    DF=BC,∠CDF=∠EBC,CD=EB,
    ∴△CDF≌△EBC(SAS),故①正确;
    在▱ABCD中,∠DAB=180°-∠ADC,
    ∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
    ∴∠CDF=∠EAF,故②正确;
    同理可证△CDF≌△EAF,
    ∴EF=CF,
    ∵△CDF≌△EBC,
    ∴CE=CF,
    ∴EC=CF=EF,
    ∴△ECF是等边三角形,故③正确;
    当CG⊥AE时,∵△ABE是等边三角形,
    ∴∠ABG=30°,
    ∴∠ABC=180°-30°=150°,
    ∵∠ABC=150°无法求出,故④错误;
    综上所述,正确的结论有①②③.
    故选B.
    本题考查了全等三角形的判定、等边三角形的判定和性质、平行线的性质等知识,综合性强,考查学生综合运用数学知识的能力.
    5、C
    【解析】
    根据题意得出第n个图形中白色圆个数为n(n+1)+2(n﹣1),据此可得.
    【详解】
    解:∵第①个图形中白色圆个数2=1×2+2×0,
    第②个图形中白色圆个数8=2×3+2×1,
    第③个图形中白色圆个数16=3×4+2×2,
    ……
    ∴第⑦个图形中白色圆个数为7×8+2×6=68,
    故选C.
    本题主要考查图形的变化规律,解题的关键是根据题意得出第n个图形中白色圆个数为n(n+1)+2(n﹣1).
    6、B
    【解析】
    首先移项,把-1移到不等式的右边,注意要变号,然后合并同类项,再把x的系数化为1,即可求出不等式的解集.
    【详解】
    解:2x-1≤3,
    移项得:2x≤3+1,
    合并同类项得:2x≤4,
    把x的系数化为1得:x≤2,
    故选:B.
    此题主要考查了一元一次不等式的解法,解不等式时要注意:①移项时要注意符号的改变;②把未知数的系数化为1时,两边同时除以或乘以同一个负数时要改变不等号的方向.
    7、A
    【解析】
    由题中可以看出,故个位的数字是以10为周期变化的,用2019÷10,计算一下看看有多少个周期即可.
    【详解】
    以2为指数的幂的末位数字是1,4,9,6,5,6,9,4,1,0依次循环的,2019÷10=201…9,
    (1+4+9+6+5+6+9+4+1+0)×201+(1+4+9+6+5+6+9+4+1)
    =45×201+20
    =9045+45
    =9090,
    ∴的个位数字是0
    故选A.
    此题主要考查了找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是找到以2为指数的末位数字的循环规律.
    8、B
    【解析】
    令y=0,求出x的值即可得出结论.
    【详解】
    解:令y=0,则x=3,
    ∴直线y=x-3与x轴的交点坐标为(3,0).
    故选:B.
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、15
    【解析】
    l1∥l2∥l3,
    ,
    所以,所以AC=15.
    10、
    【解析】
    根据二次根式的性质和二次根式的化简,可知==.
    故答案为.
    此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.
    11、2-
    【解析】
    根据题意先求出a和b,然后代入化简求值即可.
    【详解】
    解:∵2<<3,
    ∴a=2,b=﹣2,
    ∴.
    故答案为2﹣.
    二次根式的化简求值是本题的考点,用到了实数的大小比较,根据题意求出a和b的值是解题的关键.
    12、 (,)
    【解析】
    试题分析:本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的纵坐标为0是解答此题的关键.∵令y=0,则﹣3x+5=0,解得x=,∴直线y=﹣3x+5与x轴交点的坐标是(,0).
    考点:一次函数图象与x轴的交点
    13、
    【解析】
    根据菱形的性质与三角形的外角定理即可求解.
    【详解】
    ∵四边形ABCD是菱形,故∠DBC=∠BDC,
    ∵,∴∠BDC=∠ECD,
    ∴∠BEC=∠BDC+∠ECD=2∠BDC=2∠DBC

    ∴∠DBC+∠BEC=3∠DBC=90°,得∠DBC=30°,
    故∠BEC=90°-∠DBC=60°,
    故填60°.
    此题主要考查菱形的性质,解题的关键是熟知菱形的性质、等腰三角形的性质、三角形的外角定理.
    三、解答题(本大题共5个小题,共48分)
    14、见解析.
    【解析】
    根据新图形与四边形ABCD的相似比为2:1,连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,即可得出所画图形.
    【详解】
    解:如图所示.
    连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,连接EF,FG,四边形BEFG即所画图形.
    本题考查相似变换的性质,根据相似比得出BE、BF、BG与BA、BD、BC的关系是解决问题的关键.
    15、四边形是菱形,理由见解析。
    【解析】
    根据题意先证明四边形是平行四边形,再根据垂直平分线的性质即可求解.
    【详解】
    解:四边形是菱形,理由如下:
    四边形是平行四边形

    又 垂直平分

    在和中

    四边形是平行四边形

    四边形是菱形
    此题主要考查菱形的判定,解题的关键是熟知全等三角形的判定与性质及菱形的判定定理.
    16、(1)作图见解析;(2)作图见解析.
    【解析】
    (1)直接利用平移的性质得出对应点位置进而得出答案;
    (2)直接利用旋转的性质得出对应点位置进而得出答案.
    【详解】
    (1)如图所示:△A1B1C1是所求的三角形.
    (2)如图所示:△A2B2C1为所求作的三角形.
    此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.
    17、(1)(a﹣b)2;(2)1.
    【解析】
    (1)直接提取公因式(a-b),进而分解因式得出答案
    (2)直接利用提取公因式法分解因式进而把已知代入得出答案
    【详解】
    解:(1)a(a﹣b)﹣b(a﹣b)
    =(a﹣b)(a﹣b)
    =(a﹣b)2;
    (2)∵x+2y=4,
    ∴3x2+12xy+12y2
    =3(x2+4xy+4y2)
    =3(x+2y)2
    把x+2y=4代入得:
    原式=3×42=1.
    此题考查提取公因式法,掌握运算法则是解题关键
    18、(1)见解析;(2)BG=CG;(3)GH=.
    【解析】
    (1)先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG;
    (2)由全等性质得GB=GF、∠BAG=∠FAG,从而知∠GAE=∠BAD=45°、GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解之可得BG=CG=3;
    (3)由(2)中结果得出GF=3、GE=5,证△FHG∽△ECG得=,代入计算可得.
    【详解】
    (1)∵正方形ABCD的边长为6,CE=2DE,
    ∴DE=2,EC=4,
    ∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
    ∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,
    在Rt△ABG和Rt△AFG中
    ∵ ,
    ∴Rt△ABG≌Rt△AFG(HL);
    (2)∵Rt△ABG≌Rt△AFG,
    ∴GB=GF,∠BAG=∠FAG,
    ∴∠GAE=∠FAE+∠FAG=∠BAD=45°,
    设BG=x,则GF=x,CG=BC﹣BG=6﹣x,
    在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,
    ∵CG2+CE2=GE2,
    ∴(6﹣x)2+42=(x+2)2,解得x=3,
    ∴BG=3,CG=6﹣3=3
    ∴BG=CG;
    (3)由(2)知BG=FG=CG=3,
    ∵CE=4,
    ∴GE=5,
    ∵FH⊥CG,
    ∴∠FHG=∠ECG=90°,
    ∴FH∥EC,
    ∴△FHG∽△ECG,
    则=,即=,
    解得GH=.
    本题考查了四边形的综合问题,解题的关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加2,所以波动不会变,方差不变.
    【详解】
    原来的方差,
    现在的方差
    =
    =1,方差不变.
    故答案为:1.
    此题考查了方差,本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.
    20、
    【解析】
    根据二次根式的意义,被开方数是非负数求解即可.
    【详解】
    根据题意得:
    解得,
    故答案为:.
    本题主要考查学生对二次根式有意义时被开方数的取值的掌握,熟知二次根式有意义的条件是解题的关键.
    21、
    【解析】
    从特殊得到一般探究规律后,利用规律解决问题即可;
    【详解】
    ∵直线l:y=x﹣与x轴交于点B1,
    ∴B1(1,0),OB1=1,△OA1B1的边长为1,
    ∵直线y=x﹣与x轴的夹角为30°,∠A1B1O=60°,
    ∴∠A1B1B2=90°,
    ∵∠A1B2B1=30°,
    ∴A1B2=2A1B1=2,△A2B3A3的边长是2,
    同法可得:A2B3=4,△A2B3A3的边长是22,
    由此可得,△AnBn+1An+1的边长是2n,
    ∴△A2017B2018A2018的边长是1.
    故答案为1.
    本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△AnBn+1An+1的边长是2n.
    22、
    【解析】
    先通过去分母,将分式方程化为整式方程,再根据增根的定义得出x的值,然后将其代入整式方程即可.
    【详解】
    两边同乘以得,
    由增根的定义得,
    将代入得,
    故答案为:.
    本题考查了解分式方程、增根的定义,掌握理解增根的定义是解题关键.
    23、
    【解析】
    通过画一次函数的图象,从图象观察进行解答,根据当时函数的图象在的图象的上方进行解答即可.
    【详解】
    如下图由函数的图象可知,当时函数的图象在的图象的上方,即.
    故答案为:.
    本题考查的是一次函数的图象,利用数形结合进行解答是解答此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)△POA是等边三角形,理由见解析;(3)当0<t≤4时,,当4<t<8时,
    【解析】
    (1)将两直线的解析式联立组成方程组,解得x、y的值即为两直线的交点坐标的横纵坐标;
    (2)求得直线AP与x轴的交点坐标(4,0),利用OP=4PA=4得到OA=OP=PA从而判定△POA是等边三角形;
    (3)分别求得OF和EF的值,利用三角形的面积计算方法表示出三角形的面积即可.
    【详解】
    解:(1)解方程组,
    解得:.
    ∴点P的坐标为:;
    (2)当y=0时,x=4,
    ∴点A的坐标为(4,0).
    ∵,
    ∴OA=OP=PA,
    ∴△POA是等边三角形;
    (3)①当0<t≤4时,如图,在Rt△EOF中,
    ∵∠EOF=60°,OE=t,
    ∴EF=,OF=,
    ∴.
    当4<t<8时,如图,设EB与OP相交于点C,
    ∵CE=PE=t-4,AE=8-t,
    ∴AF=4-,EF=,
    ∴OF=OA-AF=4-(4-)=,

    =;
    综合上述,可得:当0<t≤4时,;当4<t<8时,.
    本题主要考查了一次函数的综合知识,解题的关键是正确的利用一次函数的性质求与坐标轴的交点坐标并转化为线段的长.
    25、 (1) y=x;
    (2) m=.
    【解析】
    (1)设y+3=k(5x+4),把x=1,y=-18代入求出k的值,进而可得出y与x的函数关系式;
    (2)直接把点(m,-8)代入(1)中一次函数的解析式即可.
    【详解】
    (1)∵y+3与5x+4成正比例,
    ∴设y+3=k(5x+4),
    ∵当x=1时,y=−18,
    ∴−18+3=k(5+4),解得k=,
    ∴y关于x的函数关系式为: (5x+4)=y+3,即y=x;
    (2)∵点(m,−8)在此图象上,
    ∴−8=m,解得m=.
    本题考查一次函数,解题的关键是掌握待定系数法求解析式.
    26、(1)(2)7 (3)25分钟
    【解析】
    试题分析:(1)根据速度=路程÷时间,列式计算即可得解;
    (2)根据停车时路程没有变化列式计算即可;
    (3)利用待定系数法求一次函数解析式解答即可.
    解:(1)平均速度=km/min;
    (2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.
    (3)设函数关系式为S=kt+b,
    将(16,12),C(30,40)代入得,

    解得.
    所以,当16≤t≤30时, S与t的函数关系式为S=2t﹣20,
    当S=30时,30=2t﹣20,解得t=25,
    即该汽车行驶30千米的时间为25分钟.
    考点:一次函数的应用.
    题号





    总分
    得分

    相关试卷

    陕西省咸阳市实验中学2024年九上数学开学联考模拟试题【含答案】:

    这是一份陕西省咸阳市实验中学2024年九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省咸阳市秦都区咸阳市实验中学2024年九上数学开学调研模拟试题【含答案】:

    这是一份陕西省咸阳市秦都区咸阳市实验中学2024年九上数学开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省咸阳市秦都区2024年九上数学开学考试试题【含答案】:

    这是一份陕西省咸阳市秦都区2024年九上数学开学考试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map