


陕西西安远东二中学2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】
展开
这是一份陕西西安远东二中学2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若平行四边形的一边长为7,则它的两条对角线长可以是( )
A.12和2B.3和4C.14和16D.4和8
2、(4分)如图,在正方形中,点,分别在,上,,与相交于点.下列结论:①垂直平分;②;③当时,为等边三角形;④当时,.其中正确的结论是( )
A.①③B.②④C.①③④D.②③④
3、(4分)如图,顺次连接四边形ABCD各边的中点的四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )
A.AB∥DCB.AC=BDC.AC⊥BDD.AB=CD
4、(4分)对于任意不相等的两个实数,,定义运算如下:.如果,那么的值为( )
A.B.C.D.
5、(4分)如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是( )
A.30B.36C.54D.72
6、(4分)如图,一次函数和反比例函数的图象交于,,两点,若,则的取值范围是( )
A.B.或
C.D.或
7、(4分)永康市某一周的最高气温统计如下单位::27,28,30,31,28,30,28,则这组数据的众数和中位数分别是
A.28,27B.28,28C.28,30D.27,28
8、(4分)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为( )
A.3.5,3B.3,4C.3,3.5D.4,3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将直线y=2x+1向下平移3个单位长度后所得直线的表达式是 ______.
10、(4分)分式当x __________时,分式的值为零.
11、(4分)已知1<x<5,化简+|x-5|=____.
12、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD=_____.
13、(4分)我市在旧城改造中,计划在市内一块如下图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价元,则购买这种草皮至少需要______元.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,平面直角坐标系内有一△ABC,且点A(2,4),B(1,1),C(4,2).
(1)画出△ABC向下平移5个单位后的△A1B1C1;
(2)画出△A1B1C1先向左平移5个单位再作关于x轴对称的△A2B2C2,并直接写出点A2,B2的坐标.
15、(8分)在一次晚会上,大家做投飞镖的游戏.只见靶子设计成如图的形式.已知从里到外的三个圆的半径分别为l,2,3,并且形成A,B,C三个区域.如果飞镖没有停落在最大圆内或只停落在圆周上,那么可以重新投镖.
(1)分别求出三个区域的面积;
(2)雨薇与方冉约定:飞镖停落在A、B区域雨薇得1分,飞镖落在C区域方冉得1分.你认为这个游戏公平吗? 为什么? 如果不公平,请你修改得分规则,使这个游戏公平.
16、(8分)如图①,E是AB延长线上一点,分别以AB、BE为一边在直线AE同侧作正方形ABCD和正方形BEFG,连接AG、CE.
(1)试探究线段AG与CE的大小关系,并证明你的结论;
(2)若AG恰平分∠BAC,且BE=1,试求AB的长;
(3)将正方形BEFG绕点B逆时针旋转一个锐角后,如图②,问(1)中结论是否仍然成立,说明理由.
17、(10分)如图,若在△ABC 的外部作正方形 ABEF 和正方形 ACGH, 求证:△ABC 的高线 AD 平分线段 FH
18、(10分)如图,在直角坐标系中,点在第一象限,轴于,轴于,,,有一反比例函数图象刚好过点.
(1)分别求出过点的反比例函数和过,两点的一次函数的函数表达式;
(2)直线轴,并从轴出发,以每秒个单位长度的速度向轴正方向运动,交反比例函数图象于点,交于点,交直线于点,当直线运动到经过点时,停止运动.设运动时间为(秒).
①问:是否存在的值,使四边形为平行四边形?若存在,求出的值;若不存在,说明理由;
②若直线从轴出发的同时,有一动点从点出发,沿射线方向,以每秒个单位长度的速度运动.是否存在的值,使以点,,,为顶点的四边形为平行四边形;若存在,求出的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若正多边形的一个内角等于150°,则这个正多边形的边数是______.
20、(4分)当x=2018时,的值为____.
21、(4分)已知△ABC 的一边长为 10,另两边长分别是方程 x2 14 x 48 0 的两个根若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是_______________.
22、(4分)一副常规的直角三角板如图放置,点在的延长线上,,,若,则______.
23、(4分)如图,正方形 ABCD 的顶点 C, A 分别在 x 轴, y 轴上, BC 是菱形 BDCE 的对角线.若 BC 6, BD 5, 则点 D 的坐标是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.
若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?
若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?
在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
25、(10分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
26、(12分)如图,G是线段AB上一点,AC和DG相交于点E.
(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)
(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
平行四边形的长为7的一边,与对角线的交点,构成的三角形的另两边应满足三角形的三边关系,即两边之和大于第三边,两边之差小于第三边.设两条对角线的长度分别是x、y,即三角形的另两边分别是x、y,那么得到不等式组,解得,所以符合条件的对角线只有14,1.
【详解】
解:如图,▱ABCD中,
AB=7,设两条对角线AC、BD的长分别是x,y.
∵四边形ABCD为平行四边形,
∴OA=OC,OB=OD
∴OA=x,OB=y,
∴在△AOB中,,
即:,
解得:,
将四个选项分别代入方程组中,只有C选项满足.
故选:C.
本题考查平行四边形的性质以及三角形的三边关系定理,根据三角形的三边关系,确定出对角线的长度范围是解题的关键,有一定的难度.
2、A
【解析】
①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
②设BC=x,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
④当∠EAF=60°时,可证明△AEF是等边三角形,从而可得∠AEF=60°,而△CEF是等腰直角三角形,得∠CEF=45°,从而可求出∠AEB=75°,进而可得结论.
【详解】
解:①四边形ABCD是正方形,
∴AB═AD,∠B=∠D=90°.
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF
∵BC=CD,
∴BC-BE=CD-DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故①正确).
②设BC=a,CE=y,
∴BE+DF=2(a-y)
EF=y,
∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
③当∠DAF=15°时,
∵Rt△ABE≌Rt△ADF,
∴∠DAF=∠BAE=15°,
∴∠EAF=90°-2×15°=60°,
又∵AE=AF
∴△AEF为等边三角形.(故③正确).
④当∠EAF=60°时,由①知AE=AF,
∴△AEF是等边三角形,
∴∠AEF=60°,
又△CEF为等腰直角三角形,
∴∠CEF=45°
∴∠AEB=180°-∠AEF-∠CEF=75°,
∴∠AEB≠∠AEF,故④错误.
综上所述,正确的有①③,
故选:A.
本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
3、C
【解析】
根据矩形的判定定理(有一个角为直角的平行四边形是矩形).先证四边形EFGH是平行四边形,要使四边形EFGH为矩形,需要∠EFG=90度.由此推出AC⊥BD.
【详解】
依题意得:四边形EFGH是由四边形ABCD各边中点连接而成,连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,所以四边形EFGH是平行四边形,要使四边形EFGH为矩形,根据矩形的判定(有一个角为直角的平行四边形是矩形),当AC⊥BD时,∠EFG=∠EHG=90度,四边形EFGH为矩形.
故选C.
本题考查了矩形的判定定理,难度一般.矩形的判定定理:
(1)有一个角是直角的平行四边形是矩形.
(2)有三个角是直角的四边形是矩形.
(3)对角线互相平分且相等的四边形是矩形.
4、B
【解析】
根据列式计算即可.
【详解】
∵,
∴=.
故选B.
本题考查了新定义运算及二次根式的性质,理解是解答本题的关键.
5、D
【解析】
求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.
【详解】
作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,
∴DE=AM=9,ME=AD=10,
又由题意可得,BM=BC=AD=5,
则BE=15,
在△BDE中,∵BD2+DE2=144+81=225=BE2,
∴△BDE是直角三角形,且∠BDE=90°,
过D作DF⊥BE于F,
则DF=,
∴S▱ABCD=BC•FD=10×=1.
故选D.
此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.
6、D
【解析】
在图象上找出一次函数在反比例函数下方时x的范围,即为所求x的范围.
【详解】
解:由一次函数y1=ax+b和反比例函数的图象交于A(-2,m),B(1,n)两点,根据图象可得:当y1<y2时,x的范围为-2<x<0或x>1.
故选:D.
本题考查反比例函数与一次函数的交点问题,利用了数形结合的数学思想,数形结合思想是数学中重要的思想方法,学生做题时注意灵活运用.
7、B
【解析】
根据众数和中位数的意义进行分析.
【详解】
27,28,30,31,28,30,28,中28出现次数最多,28再中间,则这组数据的众数和中位数分别是28,28.
故选:28,28.
本题考核知识点:众数和中位数. 解题关键点:理解众数和中位数的意义.
8、A
【解析】
根据题意可知x=2,然后根据平均数、中位数的定义求解即可.
【详解】
∵这组数据的众数是2,
∴x=2,
将数据从小到大排列为:2,2,2,4,4,7,
则平均数=(2+2+2+4+4+7)÷6=1.5
中位数为:(2+4)÷2=1.
故选A
本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=1x-1
【解析】
直线y=1x+1向下平移3个单位长度,根据函数的平移规则“上加下减”,可得平移后所得直线的解析式为y=1x+1﹣3=1x﹣1.
考点:一次函数图象与几何变换.
10、= -3
【解析】
根据分子为0,分母不为0时分式的值为0来解答.
【详解】
根据题意得:
且x-3 0
解得:x= -3
故答案为:= -3.
本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.
11、4
【解析】
【分析】由已知判断x-1>0,x-5
相关试卷
这是一份陕西西安雁塔区师范大附属中学2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省西安市远东第一中学2024-2025学年数学九年级第一学期开学统考试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
