搜索
    上传资料 赚现金
    英语朗读宝

    上海市松江区名校2025届数学九上开学调研模拟试题【含答案】

    上海市松江区名校2025届数学九上开学调研模拟试题【含答案】第1页
    上海市松江区名校2025届数学九上开学调研模拟试题【含答案】第2页
    上海市松江区名校2025届数学九上开学调研模拟试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    上海市松江区名校2025届数学九上开学调研模拟试题【含答案】

    展开

    这是一份上海市松江区名校2025届数学九上开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在,,,,,中分式的个数有( )
    A.2个B.3个C.4个D.5个
    2、(4分)如图,数轴上的点A所表示的数是( )
    A.B.C.D.
    3、(4分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是( )
    A.y1<y2B.y1>y2C.y1=y2D.不能确定
    4、(4分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )
    A.B.C. D
    5、(4分)如图,菱形中,分别是的中点,连接,则的周长为( )
    A.B.C.D.
    6、(4分)甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )
    A.甲的速度是70米/分B.乙的速度是60米/分
    C.甲距离景点2100米D.乙距离景点420米
    7、(4分)下列各式中,正确的是( )
    A.=﹣8B.﹣=﹣8C.=±8D.=±8
    8、(4分)如图,下列哪组条件不能判定四边形ABCD是平行四边形( )
    A.AB∥CD,AB=CDB.AB∥CD,AD∥BC
    C.OA=OC,OB=ODD.AB∥CD,AD=BC
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若一元二次方程的两个实数根分别是、,则一次函数的图象一定不经过第____________象限.
    10、(4分)如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.
    11、(4分)在平行四边形ABCD中,,则的度数是______°.
    12、(4分)如图,在矩形中,,.若点是边的中点,连接,过点作交于点,则的长为______.
    13、(4分)在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是黄球的概率为0.7,则袋子内共有乒乓球__________个。
    三、解答题(本大题共5个小题,共48分)
    14、(12分) 先化简,再求值:(﹣x﹣1)÷,其中x=1.
    15、(8分)如图,直线y=-x+4分别与x轴、y轴交于A、B两点.
    (1)求A、B两点的坐标;
    (2)已知点C坐标为(2,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标.
    16、(8分)先化简,再求值: ,其中x=
    17、(10分)近几年杭州市推出了“微公交”,“微公交”是国内首创的纯电动汽车租赁服务.它作为一种绿色出行方式,对缓解交通堵塞和停车困难,改善城市大气环境,都可以起到积极作用.据了解某租赁点拥有“微公交”辆.据统计,当每辆车的年租金为千元时可全部租出;每辆车的年租金每增加千元,未租出的车将增加辆.
    (1)当每辆车的年租金定为千元时,能租出多少辆?
    (2)当每辆车的年租金增加多少千元时,租赁公司的年收益(不计车辆维护等其他费用)可达到千元?
    18、(10分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD的面积和对角线长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B之间的距离应为_________ 米.
    20、(4分)如图所示,在正方形中,延长到点,若,则四边形周长为__________.
    21、(4分)如图,平行四边形ABCO的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c),则顶点坐标B的坐标为_________.
    22、(4分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为______度.
    23、(4分)一个矩形的长比宽多1cm,面积是132cm2,则矩形的长为________cm.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
    (1)当﹣2<x≤3时,求y的取值范围;
    (2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.
    25、(10分)阅读下列材料:
    在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.
    下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.
    解:设x2﹣4x=y
    原式=(y+1)(y+7)+9(第一步)
    =y2+8y+16(第二步)
    =(y+4)2(第三步)
    =(x2﹣4x+4)2(第四步)
    请根据上述材料回答下列问题:
    (1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;
    A.提取公因式法 B.平方差公式法 C.完全平方公式法
    (2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;
    (3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.
    26、(12分)2019年4月25日至27日,第二届“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议。我国准备将地的茶叶1000吨和地的茶叶500吨销往“一带一路”沿线的地和地,地和地对茶叶需求分别为900吨和600吨,已知从、两地运茶叶到、两地的运费(元/吨)如下表所示,设地运到地的茶叶为吨,
    (1)用含的代数式填空:地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________.
    (2)用含(吨)的代数式表示总运费(元),并直接写出自变量的取值范围;
    (3)求最低总运费,并说明总运费最低时的运送方案.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据分式的定义进行判断;
    【详解】
    ,,,,中分式有:,,共计3个.
    故选:B.
    考查了分式的定义,解题关键抓住分式中分母含有字母.
    2、A
    【解析】
    由题意,利用勾股定理求出点A到−1的距离,即可确定出点A表示的数.
    【详解】
    根据题意得:数轴上的点A所表示的数为−1=,
    故选:A.
    此题考查了实数与数轴,弄清点A表示的数的意义是解本题的关键.
    3、B
    【解析】
    先根据题意判断出一次函数的增减性,再根据x1<x1即可得出结论.
    【详解】
    ∵一次函数y=kx中,k<0,
    ∴函数图象经过二、四象限,且y随x的增大而减小,
    ∵x1<x1,
    ∴y1>y1.
    故选A.
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    4、D
    【解析】
    先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
    【详解】
    由题意得,2x+y=10,
    所以,y=-2x+10,
    由三角形的三边关系得,,
    解不等式①得,x>2.5,
    解不等式②的,x<5,
    所以,不等式组的解集是2.5<x<5,
    正确反映y与x之间函数关系的图象是D选项图象.
    故选:D.
    5、D
    【解析】
    首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AB=AD=BC=CD=2cm,∠B=∠D,
    ∵E、F分别是BC、CD的中点,
    ∴BE=DF,
    在△ABE和△ADF中,,
    ∴△ABE≌△ADF(SAS),
    ∴AE=AF,∠BAE=∠DAF.
    连接AC,
    ∵∠B=∠D=60°,
    ∴△ABC与△ACD是等边三角形,
    ∴AE⊥BC,AF⊥CD,
    ∴∠BAE=∠DAF=30°,
    ∴∠EAF=60°,BE=AB=1cm,
    ∴△AEF是等边三角形,AE=,
    ∴周长是.
    故选:D.
    本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.
    6、D
    【解析】
    根据图中信息以及路程、速度、时间之间的关系一一判断即可.
    【详解】
    甲的速度==70米/分,故A正确,不符合题意;
    设乙的速度为x米/分.则有,660+24x-70×24=420,
    解得x=60,故B正确,本选项不符合题意,
    70×30=2100,故选项C正确,不符合题意,
    24×60=1440米,乙距离景点1440米,故D错误,
    故选D.
    本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    7、B
    【解析】
    根据二次根式的性质逐项计算即可.
    【详解】
    解:A、=8,故此选项错误;
    B、﹣=﹣8,故此选项错正确;
    C、=8,故此选项错误;
    D、=8,故此选项错误;
    故选:B.
    题考查了二次根式的性质,熟练掌握是解答本题的关键.
    8、D
    【解析】
    平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
    【详解】
    根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.
    故选D.
    此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、四
    【解析】
    根据根与系数的关系可得出a+b=1、ab=4,再结合一次函数图象与系数的关系,即可得出一次函数y=abx+a+b的图象经过的象限,此题得解.
    【详解】
    解:∵一元二次方程的两个实数根分别是a、b,
    ∴a+b=1,ab=4,
    ∴一次函数的解析式为y=4x+1.
    ∵4>0,1>0,
    ∴一次函数y=abx+a+b的图象经过第一、二、三象限,不经过第四象限,
    故答案为:四.
    本题考查了根与系数的关系以及一次函数图象与系数的关系,利用根与系数的关系结合一次函数图象与系数的关系,找出一次函数图象经过的象限是解题的关键.
    10、3.
    【解析】
    运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.
    【详解】
    解:∵等腰直角三角形ABC,等腰直角三角形CDE
    ∴∠ECD=45°,∠ACB=45°
    即AC⊥EC,且CE∥BF
    当AG⊥BF,时AG最小,
    所以由∵AF=AE
    ∴AG=CG=AC=3
    故答案为3
    本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.
    11、100°
    【解析】
    如图所示:
    ∵四边形ABCD是平行四边形,
    ∴∠A=∠C,∠A+∠B=180°,
    ∵∠A+∠C=160°,
    ∴∠A=∠C=80°,
    ∴∠B的度数是:100°.
    故答案是:100°.
    12、
    【解析】
    根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.
    【详解】
    解:如图,连接BE.
    ∵四边形ABCD是矩形,
    ∴AB=CD=2,BC=AD=3,∠D=90°,
    在Rt△ADE中,AE=
    ∵S△ABE=S矩形ABCD=3=•AE•BF,
    ∴BF=.
    故答案为:.
    本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题关键是灵活运用所学知识解决问题,用面积法解决有关线段问题是常用方法.
    13、10
    【解析】
    分析:设有x个黄球,利用概率公式可得,解出x的值,可得黄球数量,再求总数即可.
    【详解】
    解:设黄色的乒乓球有x个,则:

    解得:x=7
    经检验,x=7是原分式方程的解
    ∴袋子里共有乒乓球7+3=10个
    :此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.
    三、解答题(本大题共5个小题,共48分)
    14、﹣x1﹣x+1,﹣2
    【解析】
    先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
    【详解】
    (﹣x﹣1)÷
    =,
    =,
    =﹣(x﹣1)(x+1)
    =﹣x1﹣x+1,
    当x=1时,
    原式=﹣2﹣1+1
    =﹣2.
    本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.
    15、 (1) A坐标(4,0)、B 坐标(0 , 4)(2) D(4, 2).
    【解析】
    分析:(1)令x=0求出与y轴的交点,令y=0求出与x轴的交点;
    (2)由(1)可得△AOB为等腰直角三角形,则∠BAO=45°,因为点D和点C关于直线AB对称,所以∠BAO=∠BAD=45°,所以AD∥y轴且AD=AC,即可求得点D的坐标。
    详解:(1) ∵直线y=-x+4分别与x轴、y轴交于A、B两点,
    当x=0时,则y=4;当y=0,则x=4,
    ∴点A坐标为(4,0)、点B 坐标为(0, 4),
    (2)D点坐标为D(4,2).
    点睛:本题考查了一次函数与坐标轴的交点,等腰直角三角形的判定与性质,轴对称的性质,熟练掌握一次函数与坐标轴的交点、轴对称的性质是解答本题的关键.
    16、,
    【解析】
    将原式进行因式分解化成最简结果,将x代入其中,计算得到结果.
    【详解】
    解:原式=
    =
    =
    因为x= ,所以原式= .
    考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.
    17、(1)17;(2)每辆车的年租金增加千元时,年收益可达到千元.
    【解析】
    (1)1.5-9=1.5,由题意得,当租金为1.5千元时有3辆没有租出,然后计算即可;
    (2)设每辆车的年租金增加x千元时,直接根据收益=176千元作为等量关系列方程求解即可.
    【详解】
    解:(1)(辆).
    (2)设每辆车的年租金增加千元,
    整理得,
    (舍),.
    即每辆车的年租金增加千元时,年收益可达到千元.
    本题考查了一元二次方程的应用,审清题意,找出合适的等量关系是解答本题的关键.
    18、正方形ABCD的面积为800;对角线BD=40.
    【解析】
    根据正方形的性质及勾股定理进行作答.
    【详解】
    连接BD.
    ∵ABCD为正方形,
    ∴∠A=∠C=90°.
    在Rt△BCE中,BC=.
    在Rt△ABD中,BD=.
    ∴正方形ABCD的面积=.
    本题考查了正方形的性质及勾股定理,熟练掌握正方形的性质及勾股定理是本题解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、32
    【解析】
    分析:可得DE是△ABC的中位线,然后根据三角形的中位线定理,可得DE∥AB,且AB=2DE,再根据DE的长度为16米,即可求出A、B两地之间的距离.
    详解:∵D、E分别是CA,CB的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥AB,且AB=2DE,
    ∵DE=16米,
    ∴AB=32米.
    故答案是:32.
    点睛:本题考查了三角形的中位线定理的应用,解答本题的关键是:明确三角形的中位线平行于第三边,并且等于第三边的一半.
    20、
    【解析】
    由正方形的性质可知,在中,由勾股定理可得CE长,在中,根据勾股定理得DE长,再由求周长即可.
    【详解】
    解:如图,连接DE,
    四边形ABCD为正方形





    在中,根据勾股定理得,

    在中,根据勾股定理得
    所以四边形周长为,
    故答案为:.
    本题主要考查了勾股定理的应用,灵活的应用勾股定理求线段长是解题的关键.
    21、 (a+b,c)
    【解析】
    平行四边形的对边相等,B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,从而确定B点的坐标.
    【详解】
    ∵四边形ABCO是平行四边形,
    ∴AO=BC,AO∥BC,
    ∴B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,
    ∵O,A,C的坐标分别是(0,0),(a,0),(b,c),
    ∴B点的坐标为(a+b,c).
    故答案是:(a+b,c).
    本题考查平行四边形的性质,平行四边形的对边相等,以及考查坐标与图形的性质等知识点.
    22、1
    【解析】
    根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.
    【详解】
    解:∵△ABC中,AB=AC,
    ∴∠B=∠C,
    ∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,
    ∴∠A:∠B=1:2,
    即5∠A=180°,
    ∴∠A=1°,
    故答案为1.
    本题考查了三角形内角和定理与等腰三角形的性质,解题的关键是能根据等腰三角形性质、三角形内角和定理与已知条件得出5∠A=180°.
    23、1
    【解析】
    设矩形的宽为xcm,根据矩形的面积=长×宽列出方程解答即可.
    【详解】
    设矩形的宽为xcm,依题意得:
    x(x+1)=132,
    整理,得(x+1)(x-11)=0,
    解得x1=-1(舍去),x2=11,
    则x+1=1.
    即矩形的长是1cm.
    故答案为:1.
    本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
    二、解答题(本大题共3个小题,共30分)
    24、 (1) ﹣4≤y<1;(2)点P的坐标为(2,﹣2) .
    【解析】
    利用待定系数法求一次函数解析式得出即可;
    (1)利用一次函数增减性得出即可.
    (2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.
    【详解】
    设解析式为:y=kx+b,
    将(1,0),(0,2)代入得:,
    解得:,
    ∴这个函数的解析式为:y=﹣2x+2;
    (1)把x=﹣2代入y=﹣2x+2得,y=1,
    把x=3代入y=﹣2x+2得,y=﹣4,
    ∴y的取值范围是﹣4≤y<1.
    (2)∵点P(m,n)在该函数的图象上,
    ∴n=﹣2m+2,
    ∵m﹣n=4,
    ∴m﹣(﹣2m+2)=4,
    解得m=2,n=﹣2,
    ∴点P的坐标为(2,﹣2).
    考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质
    25、(1)C;(2)(x﹣2)1;(3)(x+1)1.
    【解析】
    (1)根据完全平方公式进行分解因式;
    (2)最后再利用完全平方公式将结果分解到不能分解为止;
    (3)根据材料,用换元法进行分解因式.
    【详解】
    (1)故选C;
    (2)(x2﹣1x+1)(x2﹣1x+7)+9,设x2﹣1x=y,则:
    原式=(y+1)(y+7)+9=y2+8y+16=(y+1)2=(x2﹣1x+1)2=(x﹣2)1.
    故答案为:(x﹣2)1;
    (3)设x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)1.
    本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.
    26、(1),,;(2);(3)由地运往地400吨,运往地600吨;由地运往地500吨时运费最低
    【解析】
    (1)从A地运往C地x吨,A地有1000吨,所以只能运往D地(1000-x)吨;C地需要900吨,那么B地运往C地(900-x),D地需要600吨,那么运往D(x-400)吨;
    (2)根据总运费=A地运往C地运费+A地运往D地运费+B地运往C地运费+B地运往D地运费代入数值或字母可得;
    (3)根据(2)中得到的一次函数关系式,结合函数的性质和取值范围确定总运费最低方案。
    【详解】
    (1),,
    (2)
    ( )
    (3)∵,
    ∴随的增大而增大。

    ∴当时,最小.
    ∴由地运往地400吨,运往地600吨;
    由地运往地500吨时运费最低。
    本题考查了一次函数的应用,题目较为复杂,理清题中数量关系是解(2)题的关键,利用了一次函数的增减性,结合自变量x的取值范围是解(3)题的关键。
    题号





    总分
    得分
    批阅人
    35
    40
    30
    45

    相关试卷

    上海市虹口区2025届九上数学开学调研模拟试题【含答案】:

    这是一份上海市虹口区2025届九上数学开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届重庆市长寿区名校数学九上开学调研模拟试题【含答案】:

    这是一份2025届重庆市长寿区名校数学九上开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届上海市松江区九上数学开学联考模拟试题【含答案】:

    这是一份2025届上海市松江区九上数学开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map