终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    上海市长宁区高级中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】

    立即下载
    加入资料篮
    上海市长宁区高级中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】第1页
    上海市长宁区高级中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】第2页
    上海市长宁区高级中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    上海市长宁区高级中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】

    展开

    这是一份上海市长宁区高级中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列变形正确的是( )
    A.B.C.D.
    2、(4分)在菱形中,对角线相交于点,,则的长为( )
    A.B.C.D.
    3、(4分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )
    A.6折B.7折
    C.8折D.9折
    4、(4分)如图,在▱ABCD中,AC⊥BD于点O,点E为BC中点,连接OE,OE=,则▱ABCD的周长为( )
    A.4B.6C.8D.12
    5、(4分)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123;④乙的速度比甲的速度快1米/秒,其中正确的编号是( )
    A.①②B.②③C.①②③D.①②③④
    6、(4分)如图,中,,,平分交于,若,则的面积为( )
    A.B.C.D.
    7、(4分)平行四边形ABCD的对角线相交于点0,且AD≠CD,过点0作OM⊥AC,交AD于点M.如果△CDM的周长为6,那么平行四边形ABCD的周长是( )
    A.8B.10C.12D.18
    8、(4分)在平面直角坐标系中,将直线l1:y=-3x-2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为( )
    A.y=-3x-9B.y=-3x-2
    C.y=-3x+2D.y=-3x+9
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)函数y=36x-10的图象经过第______象限.
    10、(4分)若,则y _______(填“是”或“不是”)x的函数.
    11、(4分)如图,已知正方形的边长为,则图中阴影部分的面积为__________.
    12、(4分)如图,二次函数的图象过点A(3,0),对称轴为直线,给出以下结论:
    ①;②;③;④若M(-3,)、N(6,)为函数图象上的两点,则,其中正确的是____________.(只要填序号)
    13、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E. F分别是AO、AD的中点,若AC=8,则EF=___.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.
    特例感知:
    (1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;
    ①当△ABC是一个等边三角形时,AF与BC的数量关系是: ;
    ②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是 ;
    猜想论证:
    (2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.
    拓展应用:
    (3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.
    15、(8分)如图,在四边形ABCD中,,,,点P自点A向D以的速度运动,到D点即停止点Q自点C向B以的速度运动,到B点即停止,点P,Q同时出发,设运动时间为.
    用含t的代数式表示:
    ______;______;______.
    (2)当t为何值时,四边形APQB是平行四边形?
    16、(8分)端午节前夕,小东妈妈准备购买若干个粽子和咸鸭蛋(每个棕子的价格相同,每个咸鸭蛋的价格相同).已知某超市粽子的价格比咸鸭蛋的价格贵1.8元,小东妈妈发现,花30元购买粽子的个数与花12元购买的咸鸭蛋个数相同.
    (1)求该超市粽子与咸鸭蛋的价格各是多少元?
    (2)小东妈妈计划购买粽子与咸鸭蛋共18个,她的一张购物卡上还有余额40元,若只用这张购物卡,她最多能购买粽子多少个?
    17、(10分)如图,已知BD是▱ABCD对角线,AE⊥BD于点E,CF⊥BD于点F.
    (1)求证:△ADE≌△CBF;
    (2)连结CE,AF,求证:四边形AFCE为平行四边形.
    18、(10分)在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.
    (1)如图1,若DE=5,则∠DEG=______°;
    (2)若∠BEF=60°,请在图2中补全图形,并求EG的长;
    (3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为______.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.
    20、(4分)满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____; ②_____.
    21、(4分)菱形的两条对角线分别为18cm与24cm,则此菱形的周长为_____.
    22、(4分)若直线经过点和点,则的值是_____.
    23、(4分)一组数据3、4、5、5、6、7的方差是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为迎接购物节,某网店准备购进甲、乙两种运动鞋,甲种运动鞋每双的进价比乙种运动鞋每双的进价多60元,用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同.
    (1)求甲、乙两种运动鞋的进价(用列分式方程的方法解答):
    (2)该网店老板计划购进这两种运动鞋共200双,且甲种运动鞋的进货数量不少于乙种运动鞋数量的,甲种运动鞋每双售价为350元,乙种运动鞋每双售价为300元.设甲种运动鞋的进货量为m双,销售完甲、乙两种运动鞋的总利润为w元,求w与m的函数关系式,并求总利润的最大值.
    25、(10分)某学校欲招聘一名新教师,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制)如下表所示:
    (1)根据三项得分的平均分,从高到低确定应聘者的排名顺序;
    (2)学校规定:笔试、面试、才艺得分分别不得低于80分、80分、70分,并按照60%、30%、10%的比例计入个人总分,请你说明谁会被录用?
    26、(12分)用适当的方法解下列方程
    (1)
    (2)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    依据分式的基本性质进行判断,即可得到结论.
    【详解】
    解:A. ,故本选项错误;
    B. ,故本选项错误;
    C. ,故本选项正确;
    D. ,故本选项错误;
    故选:C.
    本题考查分式的基本性质,分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
    2、D
    【解析】
    由菱形的对角线的性质可知OA=4,根据勾股定理即可求出OD的长.
    【详解】
    解:如图,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,OA=AC=4,
    ∵AD=5,
    ∴OD==3.
    故选D.
    本题考查了菱形的性质和勾股定理.
    3、B
    【解析】
    设可打x折,则有1200×-800≥800×5%,
    解得x≥1.
    即最多打1折.
    故选B.
    本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.
    4、C
    【解析】
    在▱ABCD中,AC⊥BD于点O,∴▱ABCD为菱形,则其四边相等,Rt△BOC中,点E为斜边BC中点,∴OE=BE=EC=,从而可求▱ABCD的周长
    【详解】
    解:∵AC⊥BD,
    ∴▱ABCD为菱形,则其四边相等
    且点E为斜边BC中点,
    ∴OE=BE=EC=,
    ∴BC=2,
    ∴▱ABCD的周长=4BC=8
    故选:C.
    本题主要考查平行四边形的性质,熟练掌握平行四边形的性质是解答本题的关键.
    5、D
    【解析】
    易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.
    【详解】
    解:甲的速度为:8÷2=4(米/秒);
    乙的速度为:500÷100=5(米/秒);
    b=5×100﹣4×(100+2)=92(米);
    5a﹣4×(a+2)=0,
    解得a=8,
    c=100+92÷4=123(秒),
    ∴正确的有①②③④.
    故选D.
    考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.
    6、A
    【解析】
    由平分可得,故BD=CD=2,利用30°的Rt可得AD=BD=1可得AC=AD+CD=3,根据勾股定理可得:AB= 计算即可得的面积.
    【详解】
    ∵中,,

    ∵平分


    ∴BD=CD=2
    ∵,,
    ∴AD=BD=1
    ∴AC=AD+CD=1+2=3
    根据勾股定理可得:AB=

    故选:A
    本题考查了勾股定理及30°的直角三角形所对的直角边是斜边的一半及三角形的面积公式,掌握勾股定理及30°的直角三角形的性质是解题的关键.
    7、C
    【解析】
    试题分析:根据OM⊥AC,O为AC的中点可得AM=MC,根据△CDM的周长为6可得AD+DC=6,则四边形ABCD的周长为2×(AD+DC)=1.
    考点:平行四边形的性质.
    8、B
    【解析】
    根据一次函数图象的平移规律“左加右减,上加下减”即可解答.
    【详解】
    直线y=-3x-1的图象向左平移1个单位,再向上平移3个单位,得到的直线的解析式是:y=-3(x+1)-1+3=-3x-1,即y=-3x-1.
    故选B.
    本题考查了一次函数图象的平移规律,熟练运用一次函数图象的平移规律“左加右减,上加下减”是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、【解析】
    根据y=kx+b(k≠0,且k,b为常数),当k>0,b<0时,函数图象过一、三、四象限.
    【详解】
    解:因为函数中,
    ,,
    所以函数图象过一、三、四象限,
    故答案为:一、三、四.
    此题主要考查了一次函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.
    10、不是
    【解析】
    根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.
    【详解】
    对于x的值,y的对应值不唯一,故不是函数,
    故答案为:不是.
    本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.
    11、2
    【解析】
    正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.
    【详解】
    解:依题意有S阴影=×4×4=2cm1.
    故答案为:2.
    本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.
    12、①②③
    【解析】
    ①根据函数图像的开口、对称轴以及与y轴的交点可得出a、b、c的正负,即可判断正误;
    ②根据函数对称轴可得出a、b之间的等量关系,将转化为,再由函数与x轴的交点关于对称轴对称,可得出另一个交点是(-1,0),即可得出的结果,即可判断正误;
    ③根据a、b之间的等量关系,将不等式中的b代换成a,化简不等式即可判断正误;
    ④根据开口向下的函数有最大值,距离顶点越近的函数值越大,先判断M、N距离顶点的距离即可判断两个点y值得大小.
    【详解】
    解:①∵函数开口向下,∴,
    ∵对称轴,,∴;
    ∵函数与y轴交点在y轴上半轴,∴,
    ∴;所以①正确;
    ②∵函数对称轴为,
    ∴,∴,
    ∵A(3,0)是函数与x轴交点,对称轴为,
    ∴函数与x轴另一交点为(-1,0);
    ∵当时,,
    ∴,②正确;
    ③∵函数对称轴为,
    ∴,
    ∴将带入可化为:,
    ∵,不等式左右两边同除a需要不等号变方向,可得:

    即,此不等式一定成立,所以③正确;
    ④M(-3,)、N(6,)为函数图象上的两点,
    ∵点M距离顶点4个单位长度,N点距离顶点5个单位长度,函数开口向下,距离顶点越近,函数值越大,
    ∴,所以④错误.
    故答案为①②③.
    本题考查二次函数图像与系数的关系,可通过开口判断a的正负,再根据对称轴可判断a、b的关系,即“左同右异”,根据函数与y轴交点的正负可判断c的正负;根据对称轴的具体值可得出a、b之间的等量关系;在比较函数值大小的时候,开口向下的二次函数上的点距离顶点越近,函数值越大即可判断函数值大小.
    13、2
    【解析】
    由矩形的性质可知:矩形的两条对角线相等,可得BD=AC=8,即可得OD=4,在△AOD中,EF为△AOD的中位线,由此可求的EF的长.
    【详解】
    ∵四边形ABCD为矩形,
    ∴BD=AC=8,
    又∵矩形对角线的交点等分对角线,
    ∴OD=4,
    又∵在△AOD中,EF为△AOD的中位线,
    ∴EF=2.
    故答案为2.
    此题考查三角形中位线定理,解题关键在于利用矩形的性质得到BD=AC=8
    三、解答题(本大题共5个小题,共48分)
    14、(1)AF=BC;a;(2)猜想:AF=BC,(3)
    【解析】
    (1)①先判断出AD=AE=AB=AC,∠DAE=120°,进而判断出∠ADE=30°,再利用含30度角的直角三角形的性质即可得出结论;
    ②先判断出△ABC≌△ADE,利用直角三角形的性质即可得出结论;
    (2)先判断出△AEG≌△ACB,得出EG=BC,再判断出DF=EF,即可得出结论;
    (3)先判断出四边形PHCD是矩形,进而判断出∠DPC=30°,再判断出PB=PC,进而求出∠APB=150°,即可利用“夹补三角形”即可得出结论.
    【详解】
    解:(1)
    ∵△ABC与△ADE是一对“夹补三角形”,
    ∴AB=AD,AC=AE,∠BAC+∠DAE=180°,
    ①∵△ABC是等边三角形,
    ∴AB=AC=BC,∠BAC=60°
    ∴AD=AE=AB=AC,∠DAE=120°,
    ∴∠ADE=30°,
    ∵AF是“夹补中线”,
    ∴DF=EF,
    ∴AF⊥DE,
    在Rt△ADF中,AF=AD=AB=BC,
    故答案为:AF=BC;
    ②当△ABC是直角三角形时,∠BAC=90°,
    ∵∠DAE=90°=∠BAC,
    易证,△ABC≌△ADE,
    ∴DE=BC,
    ∵AF是“夹补中线”,
    ∴DF=EF,
    ∴AF=DE=BC=a,
    故答案为a;
    (2)解:猜想:AF=BC,
    理由:如图1,延长DA到G,使AG=AD,连EG
    ∵△ABC与△ADE是一对“夹补三角形”,
    ∴AB=AD,AC=AE,∠BAC+∠DAE=180°,
    ∴AG=AB,∠EAG=∠BAC,AE=AC,
    ∴△AEG≌△ACB,
    ∴EG=BC,
    ∵AF是“夹补中线”,
    ∴DF=EF,
    ∴AF=EG,
    ∴AF=BC;
    (3)证明:如图4,
    ∵△PAD是等边三角形,
    ∴DP=AD=3,∠ADP=∠APD=60°,
    ∵∠ADC=150°,
    ∴∠PDC=90°,
    作PH⊥BC于H,
    ∵∠BCD=90°
    ∴四边形PHCD是矩形,
    ∴CH=PD=3,
    ∴BH=6﹣3=3=CH,
    ∴PC=PB,
    在Rt△PCD中,tan∠DPC=,
    ∴∠DPC=30°
    ∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,
    ∴∠APB+∠CPD=180°,
    ∵DP=AP,PC=PB,
    ∴△PCD是△PBA的“夹补三角形”,
    由(2)知,CD=,
    ∴△PAB的“夹补中线”=.
    此题是四边形综合题,主要考查了全等三角形的判定和性质,含30度角的直角三角形的性质,锐角三角函数,新定义的理解和掌握,理解新定义是解本题的关键.
    15、(1)t;;;(2)5.
    【解析】
    (1)直接利用P,Q点的运动速度和运动方法进而表示出各部分的长;
    (2)利用平行四边形的判定方法得出t的值.
    【详解】
    由题意可得:,,,
    故答案为t,,;

    当时,四边形APQB是平行四边形,

    解得:.
    本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题关键.
    16、(1)咸鸭蛋的价格为1.2元,粽子的价格为3元(2)她最多能购买粽子10个
    【解析】
    (1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.
    (2)设小东妈妈能购买粽子y个,根据题意列出不等式解答即可.
    【详解】
    (1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,
    根据题意得:,
    去分母得:30x=12x+21.6,
    解得:x=1.2,
    经检验x=1.2是分式方程的解,且符合题意,
    1.8+x=1.8+1.2=3(元),
    故咸鸭蛋的价格为1.2元,粽子的价格为3元.
    (2)设小东妈妈能购买粽子y个,根据题意可得:3y+1.2(18﹣y)≤40,
    解得:y≤,
    因为y取整数,
    所以y的最大值为10,
    答:她最多能购买粽子10个
    此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.航行问题常用的等量关系为:花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同.
    17、(1)证明见解析;(2)结论:四边形AECF是平行四边形.理由见解析.
    【解析】
    (1)利用平行四边形的性质,根据ASA即可证明;
    (2)首先证明四边形AECF是平行四边形.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,
    ∴∠ADB=∠CBD,
    ∵AE⊥AD,
    ∴∠EAD=90°,同理∠BCF=90°.
    ∴∠EAD=∠BCF.
    在△AED和△CFB中
    ∠ADB=∠CBD,AD=BC,∠EAD=∠BCF,
    ∴△ADE≌△CBF.
    (2)结论:四边形AECF是平行四边形.
    理由:连接AC,
    ∵四边形ABCD是平行四边形,
    ∴AC平分BD,
    由(1)△ADE≌△CBF,
    ∴AE=CF,∠AED=∠BFC,
    ∴AE∥CF,
    ∴四边形AECF是平行四边形.
    本题考查平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    18、(1)45;(2)见解析,EG=4+2;(3)2
    【解析】
    (1)由题意可得AE=AB=3,可得∠AEB=∠ABE=45°,由矩形的性质可得AD∥BC,可得∠AEB=∠EBF=45°,∠EFB=∠GED,结合等腰三角形的性质,即可求解;
    (2)由题意画出图形,可得∠F=∠5=60°,可得∠6=∠G=30°,由直角三角形的性质可得AE=,DE=2+,由直角三角形的性质可得EG的长;
    (3)由平行四边形的性质可得EF=BD,ED=BF,由等腰三角形的性质可得AE=AD=2,由勾股定理可求EF=BE=,由EH∥CG∥BM,H是BF的中点,B是HC的中点,即可求解.
    【详解】
    (1)∵DE=5,AB=3,AD=2,
    ∴AE=AB=3,
    ∴∠AEB=∠ABE=45°,
    ∵四边形ABCD是矩形,
    ∴AD∥CB,
    ∴∠AEB=∠EBF=45°,∠EFB=∠GED,
    ∵EF=EB,
    ∴∠EFB=∠EBF=45°,
    ∴∠GED=45°,
    故答案为:45;
    (2)如图1所示.
    ∵四边形ABCD是矩形,
    ∴∠1=∠2=∠3=∠ABF=∠C=90°.
    ∵∠4=60°,EF=EB,
    ∴∠F=∠5=60°.
    ∴∠6=∠G=30°,
    ∴AE=BE.
    ∵AB=3,
    ∴根据勾股定理可得:AE2+32=(2AE)2,解得:AE=,
    ∵AD=2,
    ∴DE=2+,
    ∴EG=2DE =4+2;
    (3)如图2,连接BD,过点E作EH⊥FC,延长BA交FG于点M,
    ∵四边形EDBF是平行四边形,
    ∴EF=BD,ED=BF,
    ∵EF=BE,
    ∴EB=BD,且AB⊥DE,
    ∴AE=AD=2,
    ∴BF=DE=4,
    ∵EB==,
    ∴EF=,
    ∵EF=BE,EH⊥FC,
    ∴FH=BH=2=BC,
    ∴CH=4,
    ∵EH⊥BC,CD⊥BC,AB⊥BC,
    ∴EH∥CG∥BM,
    ∵H是BF的中点,B是HC的中点,
    ∴E是FM的中点,M是EG的中点,
    ∴EG═2EF=2
    故答案为:2
    本题主要考查矩形的性质,平行四边形的性质,勾股定理,等腰三角形的性质,直角三角形的性质定理,添加辅助线,构造等腰三角形和直角三角形是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、n2+2n
    【解析】
    试题分析:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.
    解:第n个图形需要黑色棋子的个数是n2+2n.
    故答案为:n2+2n.
    20、3,4,5 6,8,10
    【解析】
    根据勾股数的定义即可得出答案.
    【详解】
    ∵3、4、5是三个正整数,
    且满足,
    ∴3、4、5是一组勾股数;
    同理,6、8、10也是一组勾股数.
    故答案为:①3,4,5;②6,8,10.
    本题考查了勾股数.解题的关键在于要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
    21、60cm
    【解析】
    试题分析:根据菱形的性质对角线互相垂直平分,利用勾股定理求出菱形的边长即可解决问题.
    【详解】
    解:如图,四边形ABCD是菱形,AC=24,BD=18,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=OC=12,OD=OB=9,AB=BC=CD=AD,
    ∴AD==1.
    ∴菱形的周长为=60cm.
    故答案为60cm
    【点评】
    本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.
    22、4
    【解析】
    分别把和代入中即可求出k和b的值,从而可以得出k-b的值.
    【详解】
    解:∵直线经过点和点,
    ∴将代入中得-2=k-3,解得k=1,
    将代入中得b=-3,
    ∴k-b=1-(-3)=4,
    故答案为4.
    本题考查一次函数的应用,解题的关键是能根据函数图象上的点与函数的解析式的关系列出关于k和b的一元一次方程,并分别求出k和b的值.
    23、
    【解析】
    首先求出平均数,然后根据方差的计算法则求出方差.
    【详解】
    解: 平均数 =(3+4+5+5+6+7)÷6=5
    数据的方差 S2=[(3-5)2+(4-5)2+(5-5)2+(5-5)2+(6-5)2+(7-5)2]=
    故答案为 .
    二、解答题(本大题共3个小题,共30分)
    24、(1)甲、乙两种运动鞋的进价分别为200元/双、140元/双;(2)w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.
    【解析】
    (1)根据用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同,可以得到相应的分式方程,从而可以解答本题;
    (2)根据题意,可以得到w与m的函数关系式,再根据甲种运动鞋的进货数量不少于乙种运动鞋数量的,可以得到m的取值范围,最后根据一次函数的性质即可得到w的最大值.
    【详解】
    解:(1)设甲种运动鞋的价格是每双x元,则乙种运动鞋每双价格是(x﹣60)元,

    解得,x=200,
    经检验,x=200是原分式方程的解,
    ∴x﹣60=140,
    答:甲、乙两种运动鞋的进价分别为200元/双、140元/双;
    (2)由题意可得,
    w=(350﹣200)m+(300﹣140)×(200﹣m)=﹣10m+32000,
    ∵甲种运动鞋的进货数量不少于乙种运动鞋数量的,
    ∴m≥(200﹣m),
    解得,m≥50,
    ∴当m=50时,w取得最大值,此时w=31500,
    答:w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.
    本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用不等式的性质和一次函数的性质解答,注意分式方程要检验.
    25、(1)排名顺序为:甲、丙、乙;(2)丙会被录用.
    【解析】
    (1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;
    (2)先算出甲、乙、丙的总分,根据公司的规定先排除甲,再根据丙的总分最高,即可得出丙被录用
    【详解】
    (1),,
    ∴ ∴排名顺序为:甲、丙、乙.
    (2)由题意可知,只有甲的笔试成绩只有79分,不符合规定
    乙的成绩为:
    丙的成绩为:
    ∵甲先被淘汰,按照学校规定,丙的成绩高于乙的成绩,乙又被淘汰
    ∴丙会被录用.
    此题考查加权平均数,掌握运算法则是解题关键
    26、(1),;(2)或.
    【解析】
    (1)先整理成一元二次方程的一半形式,然后用求根公式法求解即可;
    (2)先移项,然后用配方法求解即可.
    【详解】
    (1)原方程整理为一般式为:,
    ,,,

    则,
    ,;
    (2),



    或 ,
    或.
    本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
    题号





    总分
    得分
    批阅人
    应试者
    面试成绩
    笔试成绩
    才艺

    83
    79
    90

    85
    80
    75

    80
    90
    73

    相关试卷

    2025届上海市长宁区9校数学九年级第一学期开学教学质量检测试题【含答案】:

    这是一份2025届上海市长宁区9校数学九年级第一学期开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年上海市长宁区西延安中学数学九年级第一学期开学检测模拟试题【含答案】:

    这是一份2024年上海市长宁区西延安中学数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年上海市长宁区高级中学九上数学开学综合测试试题【含答案】:

    这是一份2024-2025学年上海市长宁区高级中学九上数学开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map