![四川省成都市实验中学2024-2025学年九上数学开学学业质量监测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16292054/0-1729906722489/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省成都市实验中学2024-2025学年九上数学开学学业质量监测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16292054/0-1729906722532/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省成都市实验中学2024-2025学年九上数学开学学业质量监测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16292054/0-1729906722543/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
四川省成都市实验中学2024-2025学年九上数学开学学业质量监测模拟试题【含答案】
展开
这是一份四川省成都市实验中学2024-2025学年九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在中,,,将绕点旋转,当点的对应点落在边上时,点的对应点,恰好与点、在同一直线上,则此时的面积为( )
A.240B.260C.320D.480
2、(4分)下面式子从左边到右边的变形是因式分解的是( )
A.x2﹣x﹣2=x(x﹣1)﹣2B.x2﹣4x+4=(x﹣2)2
C.(x+1)(x﹣1)=x2﹣1D.x﹣1=x(1﹣)
3、(4分)如图,点是线段的中点,分别以为边作等腰和等腰,,连接,且相交于点,交于点,则下列说法中,不正确的是( )
A.是的中线B.四边形是平行四边形
C.D.平分
4、(4分)如果把分式中的和都扩大3倍,那么分式的值()
A.扩大3倍B.缩小3倍
C.缩小6倍D.不变
5、(4分)把a3-4a分解因式正确的是
A.a(a2-4)B.a(a-2)2
C.a(a+2)(a-2)D.a(a+4)(a-4).
6、(4分)如图,在菱形ABCD中,不一定成立的是
A.四边形ABCD是平行四边形B.
C.是等边三角形D.
7、(4分)A、B两点在一次函数图象上的位置如图所示,两点的坐标分别是,,下列结论正确的是
A.B.C.D.
8、(4分)下列条件中能构成直角三角形的是( ).
A.2、3、4B.3、4、5C.4、5、6D.5、6、7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)对于任意非零实数a,b,定义“☆”运算为:a☆b=,若(x+1)☆x+(x+2)☆(x+1)+(x+3)☆(x+2)+…+(x+2018)☆(x+2017)=,则x=_____.
10、(4分)若一组数据1,3,,5,4,6的平均数是4,则这组数据的中位数是__________.
11、(4分)因式分解:_________.
12、(4分)因式分解:m2n+2mn2+n3=_____.
13、(4分)分解因式:___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若点E到CD的距离为2,CD=3,试求出矩形ABCD的面积.
15、(8分)如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为 .
16、(8分)计算:
(1)+﹣
(2)2÷5
(3)(+3﹣)÷
(4)(2﹣3)2﹣(4+3)(4﹣3)
17、(10分) “中华人民共和国道路交通管理条例”规定:小汽车在高速公路上的行驶速度不得超过120千米/小时,不得低于60千米/小时,如图,一辆小汽车在高速公路上直道行驶,某一时刻刚好行驶到“车速检测点”正前方60米处,过了3秒后,测得小汽车位置与“车速检测点”之间的距离为100米,这辆小汽车是按规定行驶吗?
18、(10分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE,若BC=10cm,AB=8cm,求EF的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.
20、(4分)若-,则的取值范围是__________.
21、(4分)式子有意义,则实数的取值范围是______________.
22、(4分)正方形、、、…按如图所示的方式放置.点、、、…和点、、、…分别在直线和轴上,则点的坐标是__________.(为正整数)
23、(4分)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)小东到学校参加毕业晚会演出,到学校时发现演出道具还放在家中,此时距毕业晚会开始还有25分钟,于是立即步行回家.同时,他父亲从家里出发骑自行车以他3倍的速度给他送道具,两人在途中相遇,相遇后,小东父亲立即骑自行车以原来的速度载小东返回学校.图中线段AB、OB表示相遇前(含相遇)父亲送道具、小东取道具过程中,各自离学校的路程S(米)与所用时间t分)之间的函数关系,结合图象解答下列问题.
(1)求点B坐标;
(2)求AB直线的解析式;
(3)小东能否在毕业晚会开始前到达学校?
25、(10分).某酒厂生产A,B两种品牌的酒,平均每天两种酒共可售出600瓶,每种酒每瓶的成本和售价如表所示,设平均每天共获利y元,平均每天售出A种品牌的酒x瓶.
(1)请写出y关于x的函数关系式;
(2)如果该厂每天至少投入成本25000元,且售出的B种品牌的酒不少于全天销售总量的55%,那么共有几种销售方案?并求出每天至少获利多少元?
26、(12分)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.
(1)探索发现
如图1,当点E在菱形ABCD内部时,连接CE,BP与CE的数量关系是_______,CE与AD的位置关系是_______.
(2)归纳证明
证明2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.
(3)拓展应用
如图3,当点P在线段BD的延长线上时,连接BE,若AB=5,BE=13,请直接写出线段DP的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据旋转的性质可得,因此可得为等腰三角形,故可得三角形的高,进而计算的面积.
【详解】
根据旋转的性质可得
因此为等腰三角形
,
等腰三角形的高为:
故选A.
本题主要考查图形的旋转和等腰三角形的性质,难点在于根据题意求出高.
2、B
【解析】
根据因式分解的定义即可判断.
【详解】
A. 含有加减,不是因式分解;
B. 是因式分解;
C. 是整式的运算,不是因式分解;
D. 含有分式,不是因式分解.
故选B
此题主要考查因式分解的定义:把一个多项式化为几个整式的乘积形式.
3、D
【解析】
根据平行四边形、全等三角形的判定与性质以及等腰三角形三线合一的性质,逐一判定即可.
【详解】
∵点是线段的中点,
∴BC=EC
∵等腰和等腰,,
∴AB=AC=CD=DE,∠ABC=∠ACB=∠DCE=∠DEC=45°
∴∠ACD=90°,AD=BC=EC
∴∠CAD=∠CDA=45°
∴AD∥BE
∴四边形是平行四边形,故B选项正确;
在△ABE和△DEB中,
∴△ABE≌△DEB(SAS)
∴,故C选项正确;
∴∠DBE=∠AEB
∴FC⊥BE
∵AD∥BE
∴FC⊥AD
∴是的中线,故A选项正确;
∵AC≠CE
∴不可能平分,故D选项错误;
故选:D.
此题主要考查平行四边形、全等三角形的判定与性质以及等腰三角形的性质,熟练掌握,即可解题.
4、D
【解析】
将x,y用3x,3y代入化简,与原式比较即可.
【详解】
解:将x,y用3x,3y代入得=,
故值不变,答案选D.
本题考查分式的基本性质,熟悉掌握是解题关键.
5、C
【解析】
先提取公因式a,再对余下的多项式利用平方差公式继续分解.
【详解】
a3-4a
=a(a2-4)
=a(a+2)(a-2).
故选C.
提公因式法与公式法的综合运用.
6、C
【解析】
菱形是特殊的平行四边形,菱形具有平行四边形的所有性质,菱形是特殊的平行四边形,具有特殊性质:(1)菱形的四条边都相等,(2)菱形的对角线互相平分且垂直,(3)菱形的对角线平分每一组对角,根据菱形的性质进行解答.
【详解】
A选项,因为菱形ABCD,所以四边形ABCD是平行四边形,因此A正确,
B选项,因为AC,BD是菱形的对角线,所以, 因此B正确,
C选项,根据菱形邻边相等可得: 是等腰三角形,但不一定是等边三角形,因此C选项错误,
D选项,因为菱形的对角线平分每一组对角,所以,因此D正确,
故选C.
本题主要考查菱形的性质,解决本题的关键是要熟练掌握菱形的性质.
7、B
【解析】
根据函数的图象可知:y随x的增大而增大,y+b
相关试卷
这是一份四川省成都市八中2025届数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河北石家庄石门实验学校2024-2025学年数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省成都市青羊区部分学校九上数学开学学业质量监测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。