年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    四川省简阳市简城区2025届数学九年级第一学期开学达标测试试题【含答案】

    四川省简阳市简城区2025届数学九年级第一学期开学达标测试试题【含答案】第1页
    四川省简阳市简城区2025届数学九年级第一学期开学达标测试试题【含答案】第2页
    四川省简阳市简城区2025届数学九年级第一学期开学达标测试试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省简阳市简城区2025届数学九年级第一学期开学达标测试试题【含答案】

    展开

    这是一份四川省简阳市简城区2025届数学九年级第一学期开学达标测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,一次函数y1=x-1与反比例函数y2=的图象交于点A(2,1)、B(-1,-2),则使y1y2的x的取值范围是( ).
    A.x2B.x2或1x0
    C.1x0D.x2或x1
    2、(4分)已知,如图,,,,的垂直平分交于点,则的长为( )
    A.B.C.D.
    3、(4分)在Rt△ABC中,∠ACB=90°,AB=6cm,D为AB的中点,则CD等于( )
    A.B.C.D.
    4、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为( )
    A.6B.5C.2D.3
    5、(4分)下面式子是二次根式的是( )
    A.B.C.D.a
    6、(4分)在矩形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )
    A.2和3B.3和2C.4和1D.1和4
    7、(4分)如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为( )
    A.4B.2C.3D.2
    8、(4分)如图,在平面直角坐标系中,直线与y轴交于点B(0,4),与x轴交于点A,∠BAO=30°,将△AOB沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为( )
    A.﹣8B.﹣16C.﹣8D.﹣12
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为 .
    10、(4分)八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).
    11、(4分)= ▲ .
    12、(4分)如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.
    13、(4分)已知菱形两条对角线的长分别为4和6,则菱形的边长为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算.
    (3)请完成计算: .
    15、(8分)(1) [探索发现]正方形中,是对角线上的一个动点(与点不重合),过点作交线段于点.求证:
    小玲想到的思路是:过点作于点于点,通过证明得到.请按小玲的思路写出证明过程
    (2)[应用拓展]如图2,在的条件下,设正方形的边长为,过点作交于点.求的长.
    16、(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.
    (1)求证:四边形DFCE是菱形;
    (2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.
    17、(10分)目前由重庆市教育委员会,渝北区人们政府主办的“阳光下成长”重庆市第八届中小学生艺术展演活动落下帷幕,重庆一中学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,重庆一中获优秀组织奖,重庆一中老师李珊获先进个人奖,其中重庆一中舞蹈团将代表重庆市参加明年的全国集中展演比赛,若以下两个统计图统计了舞蹈组各代表队的得分情况:
    (1)m= ,在扇形统计图中分数为7的圆心角度数为 度.
    (2)补全条形统计图,各组得分的中位数是 分,众数是 分.
    (3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?
    18、(10分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图所示,在△ABC中,AB=AC,D,E分别是AB,AC的中点,G,H为BC上的点连接DH,EG.若AB=5cm,BC=6cm,GH=3cm,则图中阴影部分的面积为_____.
    20、(4分)分解因时:=__________
    21、(4分)如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_____cm.
    22、(4分)如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点,处,当点落在直线BC上时,线段AE的长为________.
    23、(4分)已知点,,,在平面内找一点,使得以、、、为顶点的四边形为平行四边形,则点的坐标为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知直线y=kx+b(k≠0)过点(1,2)
    (1)填空:b= (用含k代数式表示);
    (2)将此直线向下平移2个单位,设平移后的直线交x于点A,交y于点B,x轴上另有点C(1+k,0),使得△ABC的面积为2,求k值;
    (3)当1≤x≤3,函数值y总大于零,求k取值范围.
    25、(10分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
    (1)求证:四边形BFDE是矩形;
    (2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
    26、(12分)已知命题“若 a>b,则 a2>b2”.
    (1)此命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出一个 反例.
    (2)写出此命题的逆命题,并判断此逆命题的真假;若是真命题,请给予证明;若是假 命题,请举出一个反例.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据交点坐标及图象的高低即可判断取值范围.
    【详解】
    要使,则一次函数的图象要高于反比例函数的图象,
    ∵两图象交于点A(2,1)、B(-1,-2),
    ∴由图象可得:当或时,一次函数的图象高于反比例函数的图象,
    ∴使的x的取值范围是:或.
    故选:B.
    本题考查一次函数与反比例函数的图象,要掌握由图象解不等式的方法.
    2、D
    【解析】
    根据中位线的性质得出,,然后根据勾股定理即可求出DE的长.
    【详解】
    垂直平分,
    为中边上的中位线,
    ∴,
    在中,


    故选D.
    本题考查了三角形的线段长问题,掌握中位线的性质、勾股定理是解题的关键.
    3、C
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半可得CD= AB.
    【详解】
    解:∵∠ACB=90°,D为AB的中点,
    ∴CD= AB= ×6=3cm.
    故选:C.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
    4、C
    【解析】
    由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵BE:ED=1:3,
    ∴BE:OB=1:2,
    ∵AE⊥BD,
    ∴AB=OA,
    ∴OA=AB=OB,
    即△OAB是等边三角形,
    ∴∠ABD=60°,
    ∵AE⊥BD,AE=3,
    ∴AB=,
    故选C.
    此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
    5、A
    【解析】
    分析:直接利用二次根式定义分析得出答案.
    详解:A、,∵a2+1>0,∴是二次根式,符合题意;
    B、是三次根式,不合题意;
    C、,无意义,不合题意;
    D、a是整式,不合题意.
    故选A.
    点睛:此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.
    6、B
    【解析】
    先根据角平分线及矩形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.
    【详解】
    ∵AE平分∠BAD交BC边于点E,
    ∴∠BAE=∠EAD,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,AD=BC=5,
    ∴∠DAE=∠AEB,
    ∴∠BAE=∠AEB,
    ∴AB=BE=3,
    ∴EC=BC﹣BE=5﹣3=2,
    故选:B.
    本题主要考查角平分线的定义和等腰三角形的判定定理,掌握“双平等腰”模型,是解题的关键.
    7、C
    【解析】
    过D点作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角.在Rt△ABC中,AB=4,∠ABC=30°,则AC=2,BC=2,由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,由面积法:DF×BE=BD×DE求DF,则S△BCD=×BC×DF.
    【详解】
    过D点作BE的垂线,垂足为F,
    ∵∠ABC=30°,∠ABE=150°,
    ∴∠CBE=∠ABC+∠ABE=180°.
    在Rt△ABC中,∵AB=4,∠ABC=30°,∴AC=2,BC=2,
    由旋转的性质可知:BD=BC=2,DE=AC=2,BE=AB=4,
    由DF×BE=BD×DE,即DF×4=2×2,
    解得:DF=,
    S△BCD=×BC×DF=×2×=3(cm2).
    故选C.
    本题考查了旋转的性质,解直角三角形的方法,解答本题的关键是围绕求△BCD的面积确定底和高的值,有一定难度.
    8、D
    【解析】
    首先过C作CD⊥y轴,垂足为D,再根据勾股定理计算CD的长,进而计算C点的坐标,在代入反比例函数的解析式中,进而计算k的值.
    【详解】
    解:过点C作CD⊥y轴,垂足为D,
    由折叠得:OB=BC=4,∠OAB=∠BAC=30°
    ∴∠OBA=∠CBA=60°=∠CBD,
    在Rt△BCD中,∠BCD=30°,
    ∴BD=BC=2,CD= ,
    ∴C(﹣,6)代入得:k=﹣×6=﹣
    故选:D.
    本题主要考查求解反比例函数的解析式,关键在于构造辅助线计算CD的长度.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(2.5,4)或(3,4)或(2,4)或(8,4).
    【解析】
    试题解析:∵四边形OABC是矩形,
    ∴∠OCB=90°,OC=4,BC=OA=10,
    ∵D为OA的中点,
    ∴OD=AD=5,
    ①当PO=PD时,点P在OD得垂直平分线上,
    ∴点P的坐标为:(2.5,4);
    ②当OP=OD时,如图1所示:
    则OP=OD=5,PC==3,
    ∴点P的坐标为:(3,4);
    ③当DP=DO时,作PE⊥OA于E,
    则∠PED=90°,DE==3;
    分两种情况:当E在D的左侧时,如图2所示:
    OE=5-3=2,
    ∴点P的坐标为:(2,4);
    当E在D的右侧时,如图3所示:
    OE=5+3=8,
    ∴点P的坐标为:(8,4);
    综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4)
    考点:1.矩形的性质;2.坐标与图形性质;3.等腰三角形的判定;4.勾股定理.
    10、随机
    【解析】
    根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件. 可能事件是指在一定条件下,一定不发生的事件. 不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答
    【详解】
    从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件
    此题考查随机事件,难度不大
    11、1.
    【解析】
    针对零指数幂,二次根式化简和运算等考点分别进行计算,然后根据实数的运算法则求得计算结果:.
    12、1
    【解析】
    根据正方形和等边三角形的性质证明△ADE是等腰三角形,由此可以求出∠DEA,同理求出∠CEB即可解决问题.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠ADC=90°,CD=AD,
    ∵△DCE是正三角形,
    ∴DE=DC=AD,∠CDE=∠DEC=60°,
    ∴△ADE是等腰三角形,∠ADE=90°+60°=150°,
    ∴∠DAE=∠DEA==15°,
    同理可得:∠CBE=∠CEB=15°,
    ∴∠AEB=∠DEC―∠DEA―∠CEB=60°-15°-15°=1°,
    故答案为:1.
    此题主要考查了正方形和等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,灵活运用相关性质定理是解题的关键.
    13、
    【解析】
    根据菱形的性质及勾股定理即可求得菱形的边长.
    【详解】
    解:因为菱形的对角线互相垂直平分,
    所以对角线的一半为2和3,
    根据勾股定理可得菱形的边长为
    故答案为:.
    此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.
    三、解答题(本大题共5个小题,共48分)
    14、(1);;;(2);(3)
    【解析】
    (1)首先观察式子,可得出第一个式子=,第二个式子=,可得出规律,即可得出第三个式子=;
    (2)根据(1)中探寻的规律,即可得出式子=;
    (3)发现规律之后,运用规律计算即可.
    【详解】
    (1);;
    (2)
    (3)
    此题主要考查利用数字探寻规律,总结规律,运用规律计算,仔细观察,不难推导.
    15、(1)详见解析;(2)
    【解析】
    (1)过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;
    (2)连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.
    【详解】
    证明:过点作于点,于点
    是对角线上的动点

    ∠GPC+∠CPE= 90°
    (2)连接BD,如图2.
    ∵四边形ABCD是正方形,
    ∴∠BOP=90°.
    ∵PE⊥PB即∠BPE=90°,
    ∴∠PBO=90°-∠BPO=∠EPF.
    ∵EF⊥PC即∠PFE=90°,
    ∴∠BOP=∠PFE.
    在△BOP和△PFE中,

    ∴△BOP≌△PFE(AAS),
    ∴BO=PF.
    ∵四边形ABCD是正方形,
    ∴OB=OC,∠BOC=90°,
    ∴BC=OB.
    ∵BC=2,
    ∴OB=,
    ∴PF=.
    本题主要考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质等知识,有一定的综合性,而通过添加辅助线证明三角形全等是解决本题的关键.
    16、(1)证明见解析;(2)1+
    【解析】
    试题分析:(1)已知EF是DC的垂直平分线,可得DE=EC,DF=CF,∠EGC=∠FGC=90°,再由ASA证得△CGE≌△FCG,根据全等三角形的性质可得GE=GF,所以DE=EC=DF=CF,根据四条边都相等的四边形为菱形,即可判定四边形DFCE是菱形;(2)过D作DH⊥BC于H,根据30°直角三角形的性质求得BH=1;在Rt△DHB中,根据勾股定理求得DH的长,再判定△DHF是等腰直角三角形,即可得DH=FH=,即可求得BF的长.
    试题解析:
    (1)证明:∵EF是DC的垂直平分线,
    ∴DE=EC,DF=CF,∠EGC=∠FGC=90°,
    ∵CD平分∠ACB,
    ∴∠ECG=∠FCG,
    ∵CG=CG,
    ∴△CGE≌△FCG(ASA),
    ∴GE=GF,
    ∴DE=EC=DF=CF,
    ∴四边形DFCE是菱形;
    (2)过D作DH⊥BC于H,则∠DHF=∠DHB=90°,
    ∵∠ABC=60°,
    ∴∠BDH=30°,
    ∴BH=BD=1,
    在Rt△DHB中,DH==,
    ∵四边形DFCE是菱形,
    ∴DF∥AC,
    ∴∠DFB=∠ACB=45°,
    ∴△DHF是等腰直角三角形,
    ∴DH=FH=,
    ∴BF=BH+FH=1+.
    17、(1)25,54;(2)如图所示见解析;6.5,6;(3)该展演活动共产生了12个一等奖.
    【解析】
    (1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数以及圆心角度数;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.
    【详解】
    (1)10÷50%=20(组),20﹣2﹣3﹣10=5(组),
    m%=×100%=25%,
    ×360°=54°,
    故答案为:25,54;
    (2)8分这一组的组数为5,如图所示:
    各组得分的中位数是(7+6)=6.5,
    分数为6分的组数最多,故众数为6;
    故答案为:6.5,6;
    (3)由题可得,×120=12(组),
    ∴该展演活动共产生了12个一等奖.
    本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.
    18、每月实际生产智能手机1万部.
    【解析】
    分析:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.
    详解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,
    根据题意得:,
    解得:x=20,
    经检验,x=20是原方程的解,且符合题意,
    ∴(1+50%)x=1.
    答:每月实际生产智能手机1万部.
    点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、6cm1.
    【解析】
    用四边形DBCE的面积减去△DOE的面积+△HOG的面积,即可得.
    【详解】
    解:连接DE,作AF⊥BC于F,
    ∵D,E分别是AB,AC的中点,
    ∴DE=BC=3,DE∥BC,
    ∵AB=AC,AF⊥BC,
    ∴BF=BC=3,
    在Rt△ABF中,AF==4,
    ∴△ABC的面积=×6×4=11,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴△ADE的面积=11×=3,
    ∴四边形DBCE的面积=11﹣3=9,
    △DOE的面积+△HOG的面积=×3×1=3,
    ∴图中阴影部分的面积=9﹣3=6(cm1),
    故答案为6cm1.
    本题考查的知识点是三角形中位线定理,解题关键是作适当的辅助线进行解题.
    20、.
    【解析】
    首先提取公因式,进而利用完全平方公式分解因式即可.
    【详解】
    .
    故答案为:.
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    21、8
    【解析】
    先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.
    【详解】
    (),
    由勾股定理得(),
    则玻璃棒露在容器外的长度的最小值是().
    故答案为.
    考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.
    22、4或1
    【解析】
    分两种情况:①D′落在线段BC上,②D′落在线段BC延长线上,分别连接ED、ED′、DD′,利用折叠的性质以及勾股定理,即可得到线段AE的长.
    【详解】
    解:分两种情况:
    ①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:
    由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
    ∴DE=D′E,
    ∵正方形ABCD的边长是18,
    ∴AB=BC=CD=AD=18,
    ∵CF=8,
    ∴DF=D′F=CD−CF=10,
    ∴CD′==6,
    ∴BD'=BC−CD'=12,
    设AE=x,则BE=18−x,
    在Rt△AED和Rt△BED'中,
    由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+122,
    ∴182+x2=(18−x)2+122,
    解得:x=4,即AE=4;
    ②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:
    由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
    ∴DE=D′E,
    ∵正方形ABCD的边长是18,
    ∴AB=BC=CD=AD=18,
    ∵CF=8,
    ∴DF=D′F=CD−CF=10,CD'==6,
    ∴BD'=BC+CD'=24,
    设AE=x,则BE=18−x,
    在Rt△AED和Rt△BED'中,
    由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+242,
    ∴182+x2=(18−x)2+242,
    解得:x=1,即AE=1;
    综上所述,线段AE的长为4或1;
    故答案为:4或1.
    本题考查了正方形的性质、折叠变换的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键,注意分类讨论.
    23、,,
    【解析】
    根据题意画出图形,由平行四边形的性质两组对边分别平行且相等来确定点M的坐标.
    【详解】
    解:①当如图1时,
    ∵C(0,2),A(1,0),B(4,0),
    ∴AB=3,
    ∵四边形ABMC是平行四边形,
    ∴M(3,2);
    ②当如图2所示时,同①可知,M(-3,2);
    ③当如图3所示时,过点M作MD⊥x轴,
    ∵四边形ACBM是平行四边形,
    ∴BD=OA=1,MD=OC=2,
    ∴OD=4+1=5,
    ∴M(5,-2);
    综上所述,点M坐标为(3,2)、(-3,2)、(5,-2).
    本题考查了平行四边形的性质和判定,利用分类讨论思想是本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)2﹣k;(2)k=±2;(3)当k>1或﹣1<k<1时,函数值y总大于1.
    【解析】
    (1)∵直线y=kx+b(k≠1)过点(1,2),
    ∴k+b=2,
    ∴b=2﹣k.
    故答案为2﹣k;
    (2)由(1)可得y=kx+2﹣k,
    向下平移2个单位所得直线的解析式为y=kx﹣k,
    令x=1,得y=﹣k,令y=1,得x=1,
    ∴A(1,1),B(1,﹣k),
    ∵C(1+k,1),
    ∴AC=|1+k﹣1|=|k|,
    ∴S△ABC=AC•|yB|=|k|•|﹣k|=k2,
    ∴k2=2,解得k=±2;
    (3)依题意,当自变量x在1≤x≤3变化时,函数值y的最小值大于1.
    分两种情况:
    ⅰ)当k>1时,y随x增大而增大,
    ∴当x=1时,y有最小值,最小值为k+2﹣k=2>1,
    ∴当 k>1时,函数值总大于1;
    ⅱ)当k<1时,y随x增大而减小,
    ∴当x=3时,y有最小值,最小值为3k+2﹣k=2k+2,
    由2k+2>1得k>﹣1,
    ∴﹣1<k<1.
    综上,当k>1或﹣1<k<1时,函数值y总大于1.
    25、(1)见解析(2)见解析
    【解析】
    试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
    (2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.
    试题分析:(1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD.
    ∵BE∥DF,BE=DF,
    ∴四边形BFDE是平行四边形.
    ∵DE⊥AB,
    ∴∠DEB=90°,
    ∴四边形BFDE是矩形;
    (2)∵四边形ABCD是平行四边形,
    ∴AB∥DC,
    ∴∠DFA=∠FAB.
    在Rt△BCF中,由勾股定理,得
    BC===5,
    ∴AD=BC=DF=5,
    ∴∠DAF=∠DFA,
    ∴∠DAF=∠FAB,
    即AF平分∠DAB.
    【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.
    26、(1)假命题,举例如a=1,b=-1;反例不唯一.(2)逆命题为“若a2>b2,则a>b”,该命题也是假命题,举例如a=-2,b=1;反例不唯一.
    【解析】
    (1)判断是否为真命题,需要分析由题设是否能推出结论,本题可从a、b的正负性来考虑反例,如a=1,b=-1来进行检验判断;
    (2)先写出逆命题,再按照(1)的思路进行判断.
    【详解】
    解:(1)假命题,举例如a=1,b=-1,满足a>b,但很明显,,不满足a2>b2,所以原命题是假命题;当然反例不唯一.
    (2)逆命题为“若a2>b2,则a>b”,该命题也是假命题,举例如a=-2,b=1,满足a2>b2,但不满足a>b;反例也不唯一.
    本题主要考查命题和逆命题的知识,判断命题的真假关键是熟知课本中有关的定义和性质定理等,另外,正确举出反例是判断假命题的常用方法.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年四川省简阳市镇金区、简城区数学九上开学达标检测模拟试题【含答案】:

    这是一份2024年四川省简阳市镇金区、简城区数学九上开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年四川省简阳市简城区、镇金区数学九上开学达标测试试题【含答案】:

    这是一份2024年四川省简阳市简城区、镇金区数学九上开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省简阳市镇金区、简城区2023-2024学年九上数学期末教学质量检测试题含答案:

    这是一份四川省简阳市镇金区、简城区2023-2024学年九上数学期末教学质量检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,方程x,方程x2-4=0的解是,下列是随机事件的是,若,,则以为根的一元二次方程是,下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map