搜索
    上传资料 赚现金
    英语朗读宝

    四川省南充市高坪区高坪中学2024-2025学年数学九年级第一学期开学监测试题【含答案】

    四川省南充市高坪区高坪中学2024-2025学年数学九年级第一学期开学监测试题【含答案】第1页
    四川省南充市高坪区高坪中学2024-2025学年数学九年级第一学期开学监测试题【含答案】第2页
    四川省南充市高坪区高坪中学2024-2025学年数学九年级第一学期开学监测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省南充市高坪区高坪中学2024-2025学年数学九年级第一学期开学监测试题【含答案】

    展开

    这是一份四川省南充市高坪区高坪中学2024-2025学年数学九年级第一学期开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)今年我市有近2万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )
    A.这1000名考生是总体的一个样本B.近2万名考生是总体
    C.每位考生的数学成绩是个体D.1000名学生是样本容量
    2、(4分)函数中自变量x的取值范围是( )
    A.x≠﹣1B.x>﹣1C.x≠1D.x≠0
    3、(4分)我校开展了主题为“青春·梦想”的艺术作品征集活动、从八年级某六个班中收集到的作品数量(单位:件)统计如图,则这组数据的众数、中位数、平均数依次是( )
    A.48,48,48B.48,47.5,47.5
    C.48,48,48.5D.48,47.5,48.5
    4、(4分)如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DG,则A′G的长是()
    A.1B.C.D.2
    5、(4分)如图,菱形中,,与交于,为延长线上的一点,且,连结分别交,于点,,连结则下列结论:①;②与全等的三角形共有个;③;④由点,,,构成的四边形是菱形.其中正确的是( )
    A.①④B.①③④C.①②③D.②③④
    6、(4分)如图,中,,,,将沿射线的方向平移,得到,再将绕逆时针旋转一定角度,点恰好与点重合,则平移的距离和旋转角的度数分别为( )
    A.4,B.2,C.1,D.3,
    7、(4分)如图,点、在函数(,且是常数)的图像上,且点在点的左侧过点作轴,垂足为,过点作轴,垂足为,与的交点为,连结、.若和的面积分别为1和4,则的值为( )
    A.4B.C.D.6
    8、(4分)在一个直角三角形中,如果斜边长是10,一条直角边长是6,那么另一条直角边长是( ).
    A.6B.7C.8D.9
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知点,,直线与线段有交点,则的取值范围是______.
    10、(4分)已知关于x的方程x2-2ax+1=0有两个相等的实数根,则a=____.
    11、(4分)已知反比例函数,若,且,则的取值范围是_____.
    12、(4分)如图,在四边形ABCD中,AD//BC,E、F分别是AB、CD的中点,若AD=3,BC=5,则EF=____________.
    13、(4分)如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
    求证:四边形BECF是平行四边形.
    15、(8分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数.(如下表)
    (1)写出这15人该月加工零件数的平均数、中位数和众数;
    (2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.
    16、(8分)先化简,再求值:),其中.
    17、(10分)先化简再求值
    ,其中.
    18、(10分)已知,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴的正半轴、y轴的正半轴上,且OA、OC()的长是方程的两个根.
    (1)如图,求点A的坐标;
    (2)如图,将矩形OABC沿某条直线折叠,使点A与点C重合,折痕交CB于点D,交OA于点E.求直线DE的解析式;
    (3)在(2)的条件下,点P在直线DE上,在直线AC上是否存在点Q,使以点A、B、P、Q为顶点的四边形是平行四边形.若存在,请求出点Q坐标;若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若式子在实数范围内有意义,则x的取值范围是 .
    20、(4分)已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.
    21、(4分)如图,在中,连结.且,过点作于点,过点作于点,且,在的延长线上取一点,满足,则_______.
    22、(4分)如图,已知EF是△ABC的中位线,DE⊥BC交AB于点D,CD与EF交于点G,若CD⊥AC,EF=8,EG=3,则AC的长为___________.
    23、(4分)计算:(-0.75)2015 × = _____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)阅读:所谓勾股数就是满足方程的正整数解,即满足勾股定理的三个正整数构成的一组数我国古代数学专著九章算术一书,在世界上第一次给出该方程的解为:,,,其中,m,n是互质的奇数.应用:当时,求一边长为8的直角三角形另两边的长.
    25、(10分)甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在同一次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.
    甲校 93 82 76 77 76 89 89 89 83 87 88 89 84 92 87
    89 79 54 88 92 90 87 68 76 94 84 76 69 83 92
    乙校 84 63 90 89 71 92 87 92 85 61 79 91 84 92 92
    73 76 92 84 57 87 89 88 94 83 85 80 94 72 90
    (1)请根据乙校的数据补全条形统计图;
    (2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格;
    (3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,
    请为他们各写出一条可以使用的理由;
    甲校: .乙校: .
    (4)综合来看,可以推断出 校学生的数学学业水平更好一些,理由为 .
    26、(12分)计算:(1)-;
    (2)(1-)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    试题分析:1000名考生的数学成绩是总体的一个样本;近8万多名考生的数学成绩是总体;每位考生的数学成绩是个体;1000是样本容量.
    考点:(1)、总体;(2)、样本;(3)、个体;(4)、样本容量.
    2、A
    【解析】
    根据有分式的意义的条件,分母不等于0,可以求出x的范围.
    【详解】
    解:根据题意得:x+1≠0,
    解得:x≠﹣1.
    故选:A.
    本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
    3、A
    【解析】
    根据众数、中位数的定义和加权平均数公式分别进行解答即可.
    【详解】
    解:这组数据48出现的次数最多,出现了3次,则这组数据的众数是48;
    把这组数据从小到大排列,最中间两个数的平均数是(48+48)÷2=48,则中位数是48;
    这组数据的平均数是:(47×2+48×3+50)÷6=48,
    故选:A.
    本题考查了众数、中位数和平均数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).
    4、C
    【解析】
    由在矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,由折叠的性质,即可求得A′B的长,然后设A′G=x,由勾股定理即可得:x2+4=(4-x)2,解此方程即可求得答案.
    【详解】
    ∵四边形ABCD是矩形,


    由折叠的性质,可得:A′D=AD=3,A′G=AG,
    ∴A′B=BD−A′D=5−3=2,
    设A′G=x,
    则AG=x,BG=AB−AG=4−x,
    在Rt△A′BG中,

    解得:

    故选:C.
    考查折叠的性质,矩形的性质,勾股定理等知识点,熟练掌握折叠的性质是解题的关键.
    5、A
    【解析】
    连结,可说明四边形是平行四边形,即是的中点;由有题意的可得O是BD的中点,即可判定①;运用菱形和平行四边形的性质寻找判定全等三角形的条件,找出与其全等的三角形即可判定②;证出OG是△ABD的中位线,得出OG//AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形0DGF=S△ABF.即可判定③;先说明△ABD是等边三角形,则BD=AB,即可判定④.
    【详解】
    解:如图:连结.
    ,,
    四边形是平行四边形,
    是的中点,
    ∵O是BD的中点
    ,①正确;
    有,,,,,,共个,②错误;
    ∵OB=OD,AG=DG,
    ∴OG是△ABD的中位线,
    ∴OG//AB,OG=AB,
    ∴△GOD∽△ABD,△ABF∽△OGF,
    ∵△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,
    ∴△AFG的面积=△OGF的面积的2倍,
    又∵△GOD的面积=△A0G的面积=△B0G的面积,
    .∴;不正确;③错误;
    是等边三角形.

    是菱形,④正确.
    故答案为A.
    本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;考查知识点较多、难道较大,解题的关键在于对所学知识的灵活应用.
    6、B
    【解析】
    利用旋转和平移的性质得出,∠A′B′C=,AB=A′B′=A′C=4,进而得出△A′B′C是等边三角形,即可得出BB′以及∠B′A′C的度数.
    【详解】
    将沿射线的方向平移,得到,
    再将绕点逆时针旋转一定角度后,点恰好与点重合,
    ∴,
    ∴,
    ∴是等边三角形,
    ∴,,
    ∴,旋转角的度数为.
    ∴平移的距离和旋转角的度数分别为:2,.
    故选:B.
    此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.
    7、D
    【解析】
    设点M(a,0),N(0,b),然后可表示出点A、B、C的坐标,根据的面积为1可求出ab=2,根据的面积为4列方程整理,可求出k.
    【详解】
    解:设点M(a,0),N(0,b),
    ∵AM⊥x轴,且点A在反比例函数的图象上,
    ∴点A的坐标为(a,),
    ∵BN⊥y轴,
    同理可得:B(,b),则点C(a,b),
    ∵S△CMN=NC•MC=ab=1,
    ∴ab=2,
    ∵AC=−b,BC=−a,
    ∴S△ABC=AC•BC=(−b)•(−a)=4,即,
    ∴,
    解得:k=6或k=−2(舍去),
    故选:D.
    本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.
    8、C
    【解析】
    本题直接根据勾股定理求解即可.
    【详解】
    由勾股定理的变形公式可得:另一直角边长==1.
    故选C.
    本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、﹣1≤m≤1.
    【解析】
    分别把点,代入直线,求得m的值,由此即可判定的取值范围.
    【详解】
    把M(﹣1,2)代入y=x+m,得﹣1+m=2,解得m=1;
    把N(2,1)代入y=x+m得2+m=1,解得m=﹣1,
    所以当直线y=x+m与线段MN有交点时,m的取值范围为﹣1≤m≤1.
    故答案为:﹣1≤m≤1.
    本题考查了一次函数的图象与线段的交点,根据点的坐标求得对应m的值,再利用数形结合思想是解决本题的关键.
    10、
    【解析】
    根据方程的系数结合根的判别式△=0,可得出关于a的一元二次方程,解之即可得出结论.
    【详解】
    解:∵关于x的方程x2-2ax+1=0有两个相等的实数根,
    ∴△=(-2a)2-4×1×1=0,
    解得:a=±1.
    故答案为:±1.
    本题考查了根的判别式,牢记“当△=0时,方程有两个相等的两个实数根”是解题的关键.
    11、或
    【解析】
    利用反比例函数增减性分析得出答案.
    【详解】
    解:且,
    时,,
    在第三象限内,随的增大而减小,

    当时,,在第一象限内,随的增大而减小,
    则,
    故的取值范围是:或.
    故答案为:或.
    此题主要考查了反比例函数图象上点的坐标特征,正确掌握反比例函数增减性是解题关键.
    12、1
    【解析】
    由题意可知EF为梯形ABCD的中位线,根据梯形中位线等于上底加下底的和的一半可得答案.
    【详解】
    ∵四边形ABCD中,AD//BC
    ∴四边形ABCD为梯形,
    ∵E、F分别是AB、CD的中点
    ∴EF是梯形ABCD的中位线
    ∴EF===1
    故答案为:1.
    本题考查梯形的中位线,熟练掌握梯形中位线的性质是解题的关键.
    13、1
    【解析】
    试题分析:根据勾股定理得到AE==1,由平行线等分线段定理得到AE=BE=1,根据平移的性质即可得到结论.∵∠C=90°,AD=DC=4,DE=3, ∴AE==1, ∵DE∥BC, ∴AE=BE=1,
    ∴当点D落在BC上时,平移的距离为BE=1.
    考点:平移的性质
    三、解答题(本大题共5个小题,共48分)
    14、证明见详解.
    【解析】
    通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形.
    【详解】
    证明:∵BE⊥AD,CF⊥AD,
    ∴∠AEB=∠DFC=90°,
    ∵AB∥CD,
    ∴∠A=∠D,
    在△AEB与△DFC中,
    ∴△AEB≌△DFC(ASA),
    ∴BE=CF.
    ∵BE⊥AD,CF⊥AD,
    ∴BE∥CF.
    ∴四边形BECF是平行四边形.
    本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.
    15、(1)平均数为26件,中位数为24件,众数为24件;(2)合理.
    【解析】
    (1)先根据加权平均数公式即可求得平均数,再将表中的数据按照从大到小的顺序排列,根据中位数和众数的概念求解即可;
    (2)应根据(1)中求出的中位数和众数综合考虑.
    【详解】
    解:(1)平均数==26(件),
    将表中的数据按照从大到小的顺序排列,可得出第8名工人的加工零件数为24件,且零件加工数为24的工人最多,
    故中位数为:24件,众数为:24件.
    答:这15人该月加工零件数的平均数为26件,中位数为24件,众数为24件.
    (2)24件较为合理,24既是众数,也是中位数,且24小于人均零件加工数,是大多数人能达到的定额.
    本题主要考查了加权平均数、众数和中位数的概念:(1)一组数据中出现次数最多的数据叫做众数.(2)将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    16、,.
    【解析】
    试题分析:先通分,然后进行四则运算,最后将a的值代入计算即可.
    试题解析:原式===,
    当时,原式===.
    考点:分式的化简求值.
    17、a-b,-1
    【解析】
    根据分式的运算法则先算括号里的减法,然后做乘法即可。
    【详解】
    解:原式



    当时,
    原式
    本题考查了分式的混合运算,熟练掌握运算法则是解题的关键。
    18、(1)(1,0);(2);(3)存在点或或,使以点A、B、P、Q为顶点的四边形是平行四边形.
    【解析】
    (1)通过解一元二次方程可求出OA的长,结合点A在x轴正半轴可得出点A的坐标;
    (2)连接CE,设OE=m,则AE=CE=1-m,在Rt△OCE中,利用勾股定理可求出m的值,进而可得出点E的坐标,同理可得出点D的坐标,根据点D,E的坐标,利用待定系数法可求出直线DE的解析式;
    (3)根据点A,C的坐标,利用待定系数法可求出直线AC的解析式,设点P的坐标为(a,2a-6),点Q的坐标为(c,-c+2),分AB为边和AB为对角线两种情况考虑:①当AB为边时,利用平行四边形的性质可得出关于a,c的二元一次方程组,解之可得出c值,再将其代入点Q的坐标中即可得出结论;②当AB为对角线时,利用平行四边形的对角线互相平分,可得出关于a,c的二元一次方程组,解之可得出c值,再将其代入点Q的坐标中即可得出结论.综上,此题得解.
    【详解】
    (1)解方程x2-12x+32=0,得:x1=2,x2=1.
    ∵OA、OC的长是方程x2-12x+32=0的两个根,且OA>OC,点A在x轴正半轴上,
    ∴点A的坐标为(1,0).
    (2)连接CE,如图2所示.
    由(1)可得:点C的坐标为(0,2),点B的坐标为(1,2).
    设OE=m,则AE=CE=1-m.
    在Rt△OCE中,∠COE=90°,OC=2,OE=m,
    ∴CE2=OC2+OE2,即(1-m)2=22+m2,
    解得:m=3,
    ∴OE=3,
    ∴点E的坐标为(3,0).
    同理,可求出BD=3,
    ∴点D的坐标为(5,2).
    设直线DE解析式为:


    ∴直线DE解析式为:
    (3)∵点A的坐标为(1,0),点C的坐标为(0,2),点B的坐标为(1,2),
    ∴直线AC的解析式为y=-x+2,AB=2.
    设点P的坐标为(a,2a-6),点Q的坐标为(c,-c+2).
    分两种情况考虑,如图5所示:
    ①当AB为边时, ,
    解得:c1=,c2=,
    ∴点Q1的坐标为(,),点Q2的坐标为(,);
    ②当AB为对角线时,,
    解得: ,
    ∴点Q3的坐标为(,- ).
    综上,存在点或或,使以点A、B、P、Q为顶点的四边形是平行四边形
    本题考查了解一元二次方程、矩形的性质、勾股定理、折叠的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)通过解一元二次方程,找出点A的坐标;(2)利用勾股定理,求出点D,E的坐标;(3)分AB为边和AB为对角线两种情况,利用平行四边形的性质求出点Q的坐标.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    根据二次根式被开方数必须是非负数的条件,
    要使在实数范围内有意义,必须.
    故答案为
    20、或
    【解析】
    先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.
    【详解】
    根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),
    则×2×|b|=1,
    解得|b|=1,
    ∴b=±1,
    ①当b=1时,与y轴交点为(0,1),
    ∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;
    ②当b=-1时,与y轴的交点为(0,-1),
    ∴2k-1=0,解得k=,∴函数解析式为y=-x-1,
    综上,这个一次函数的解析式是或,
    故答案为:或.
    本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.
    21、
    【解析】
    根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP.
    【详解】
    解:∵BD=CD,AB=CD,
    ∴BD=BA,
    又∵AM⊥BD,DN⊥AB,
    ∴DN=AM= ,
    又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,
    ∴∠P=∠PAM,
    ∴△APM是等腰直角三角形,
    ∴AP=AM=1,
    故答案为1.
    本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.
    22、1
    【解析】
    由三角形中位线定理得出AB=2EF=16,EF∥AB,AF=CF,CE=BE,证出GE是△BCD的中位线,得出BD=2EG=6,AD=AB-BD=10,由线段垂直平分线的性质得出CD=BD=6,再由勾股定理即可求出AC的长.
    【详解】
    ∵EF是△ABC的中位线,
    ∴AB=2EF=16,EF∥AB,AF=CF,CE=BE,
    ∴G是CD的中点,
    ∴GE是△BCD的中位线,
    ∴BD=2EG=6,
    ∴AD=AB-BD=10,
    ∵DE⊥BC,CE=BE,
    ∴CD=BD=6,
    ∵CD⊥AC,
    ∴∠ACD=90°,
    ∴AC=;
    故答案为:1.
    本题考查了三角形中位线定理、线段垂直平分线的性质、勾股定理等知识;熟练掌握三角形中位线定理,求出CD=BD是解题的关键.
    23、
    【解析】
    根据积的乘方的逆用进行计算求解.
    【详解】
    解:(-0.75)2015 ×
    =
    =
    =
    =
    本题考查积的乘方的逆用使得运算简便,掌握积的乘方公式正确计算是本题的解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、当时,一边长为8的直角三角形另两边的长分别为15,1.
    【解析】
    分情况讨论:当 时,利用计算出m,然后分别计算出y和z;当时,利用,解得,不合题意舍去;当时,利用求出,不合题意舍去,从而得到当时,一边长为8的直角三角形另两边的长.
    【详解】
    分三种情况:
    当 时,

    解得,舍去,


    当时,
    ,解得
    而m为奇数,所以舍去;
    当时,
    ,解得,而m为奇数
    舍去,
    综上所述,当时,一边长为8的直角三角形另两边的长分别为15,1.
    考查了勾股数:满足的三个正整数,称为勾股数记住常用的勾股数再做题可以提高速度.
    25、(1)见解析;(2)见解析;(3)见解析;(4)见解析.
    【解析】
    【分析】(1)根据提供数据,整理出各组的频数,再画图;(2)由数据可知,乙校中位数是86,众数是1;(3)答案不唯一,理由需包含数据提供的信息;(4)答案不唯一,理由需支撑推断结论.
    【详解】解:(1)补全条形统计图,如下图.

    (2)86;1.
    (3)答案不唯一,理由需包含数据提供的信息.如:甲校平均数最高;乙校众数最高;
    (4)答案不唯一,理由需支撑推断结论.如:甲校成绩比较好,因为平均数最高,且有一半的人分数大于87.
    【点睛】本题考核知识点:数据的代表.解题关键点:从统计图表获取信息.
    26、(1);(2)a+1
    【解析】
    (1)直接化简二次根式进而合并得出答案;
    (2)直接将括号里面通分进而利用分式的混合运算法则计算即可.
    【详解】
    (1)原式=2-+3
    =;
    (2)原式=×
    =a+1.
    此题主要考查了分式的混合运算以及二次根式的加减运算,正确掌握相关运算法则是解题关键.
    题号





    总分
    得分
    批阅人
    每人加工零件数
    54
    45
    30
    24
    21
    12
    人 数
    1
    1
    2
    6
    3
    2
    平均数
    中位数
    众数
    甲校
    83.4
    87
    89
    乙校
    83.2

    相关试卷

    2024年四川省南充市高坪区南充市高坪中学数学九年级第一学期开学质量检测模拟试题【含答案】:

    这是一份2024年四川省南充市高坪区南充市高坪中学数学九年级第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省南充市高坪区南充市高坪中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含答案:

    这是一份四川省南充市高坪区南充市高坪中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含答案,共8页。试卷主要包含了下列图形等内容,欢迎下载使用。

    2023-2024学年四川省南充市高坪区高坪中学九上数学期末经典模拟试题含答案:

    这是一份2023-2024学年四川省南充市高坪区高坪中学九上数学期末经典模拟试题含答案,共8页。试卷主要包含了抛物线的顶点坐标是,的倒数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map