![四川省南充市广安市广安中学2024年数学九年级第一学期开学经典模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16292176/0-1729908942094/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省南充市广安市广安中学2024年数学九年级第一学期开学经典模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16292176/0-1729908942147/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省南充市广安市广安中学2024年数学九年级第一学期开学经典模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16292176/0-1729908942186/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
四川省南充市广安市广安中学2024年数学九年级第一学期开学经典模拟试题【含答案】
展开
这是一份四川省南充市广安市广安中学2024年数学九年级第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,∠CAB=∠DAB下列条件中不能使△ABC≌△ABD的是( )
A.∠C=∠DB.∠ABC=∠ABDC.AC=ADD.BC=BD
2、(4分)菱形具有而平行四边形不具有的性质是( )
A.对角线互相垂直B.对边平行
C.对边相等D.对角线互相平分
3、(4分)方程x2+x﹣1=0的一个根是( )
A.1﹣B.C.﹣1+D.
4、(4分)若一个多边形从一个顶点出发的对角线共有3条,则这个多边形的内角和为( )
A.360°B.540°C.720°D.1080°
5、(4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是( )
A.-=20B.-=20C.-=D.=
6、(4分)如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则( )
A.甲、乙都可以B.甲可以,乙不可以
C.甲不可以,乙可以D.甲、乙都不可以
7、(4分)等腰三角形的周长为20,设底边长为,腰长为,则关于的函数解析式为(为自变量)( )
A.B.C.D.
8、(4分)不等式的解集为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当__________时,代数式取得最小值.
10、(4分)在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________
11、(4分)若,是一元二次方程的两个根,则______.
12、(4分)将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为_____.
13、(4分)如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC=3,BC=5,则DF=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.
(1)每台A,B两种型号的机器每小时分别加工多少个零件?
(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?
15、(8分)如图①, 已知△ABC中, ∠BAC=90°, AB="AC," AE是过A的一条直线, 且B、C在AE的异侧, BD⊥AE于D, CE⊥AE于E.
(1)求证: BD=DE+CE.
(2)若直线AE绕A点旋转到图②位置时(BDCE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请直接写出结果, 不需证明.
(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系.
16、(8分)传统节日“春节”到来之际,某商店老板以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.
(1)请写出每月销售该商品的利润y(元)与单价x(元)间的函数关系式;
(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?
17、(10分)甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表,
请根据上述数据判断,在这5天中,哪台机床出次品的波动较小?并说明理由.
18、(10分)数形结合是一种重要的数学思想,我们不但可以用数来解决图形问题,同样也可以用借助图形来解决数量问题,往往能出奇制胜,数轴和勾股定理是数形结合的典范.数轴上的两点A和B所表示的数分别是和,则A,B两点之间的距离;坐标平面内两点,,它们之间的距离.如点,,则.表示点与点之间的距离,表示点与点和的距离之和.
(1)已知点,,________;
(2)表示点和点之间的距离;
(3)请借助图形,求的最小值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)设甲组数:,,,的方差为,乙组数是:,,,的方差为,则与的大小关系是_______(选择“>”、“8x+6
6x-8x>6-15
-2x>-9
x.
故答案为:>.
此题考查方差,解题关键在于掌握方差的意义.
20、1
【解析】
设反比例函数的解析式是:y=,设A的点的坐标是(m,n),则AB=m,OB=n,mn=k.根据三角形的面积公式即可求得mn的值,即可求得k的值.
【详解】
设反比例函数的解析式是:y=,设A的点的坐标是(m,n).
则AB=m,OB=n,mn=k.
∵△ABP的面积为2,
∴AB•OB=2,即mn=2
∴mn=1,则k=mn=1.
故答案是:1.
此题考查反比例函数系数k的几何意义,解题关键在于掌握过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是|k|.
21、1
【解析】
解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,∠BAD=90°,∵∠ADB=30°,∴AC=BD=2AB=8,∴OC=AC=1.故答案为1.
点睛:此题考查了矩形的性质、含30°角的直角三角形的性质.熟练掌握矩形的性质,注意掌握数形结合思想的应用.
22、13 13.5
【解析】
这组数据中出现次数最多的数为众数;把这组数按从小到大的顺序排列,因为数的个数是偶数个,那么中间两个数的平均数即是中位数由此解答.
【详解】
解:∵15、13、14、13、16、13中13出现次数最多有3次,
∴众数为13,
将这组数从小到大排列为:13,13,13,14,15,16,最中间的两个数是13,14,所以中位数=(13+14)÷2=13.5
故答案为:13;13.5.
此题主要考查了中位数和众数的含义.
23、
【解析】
根据等边对等角和三角形的内角和定即可求出∠ABC,然后根据垂直平分线的性质可得DA=DB,再根据等边对等角可得∠DBA=∠A,即可求出∠DBC.
【详解】
解:∵,,
∴∠ABC=∠ACB=(180°-∠A)=75°
∵的垂直平分线交于点,
∴DA=DB
∴∠DBA=∠A=30°
∴∠DBC=∠ABC-∠DBA=45°
故答案为:45°
此题考查的是等腰三角形的性质和垂直平分线的性质,掌握等边对等角和垂直平分线的性质是解决此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2).
【解析】
(1)先化简每个二次根式,再合并同类二次根式即得结果;(2)先按照完全平方公式展开,再合并、化简即可.
【详解】
解:(1)==;
(2)=.
本题考查了二次根式的混合运算,对于二次根式的混合运算,一般先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,最后合并同类二次根式.
25、(1),(2)(3),
【解析】
由可得,,,,易证≌,,,因此;
同可证≌,,,,求得最后代入求出一次函数解析式即可;
分两种情况讨论当点Q在x轴下方时,当点Q在x轴上方时根据等腰构建一线三直角,从而求解.
【详解】
如图1,作轴,轴.
,
,,
,
≌,
,,
.
故答案为,;
如图2,过点B作轴.
,
≌,
,,
.
设直线AB的表达式为
将和代入,得
,
解得,
直线AB的函数表达式.
如图3,设,分两种情况:
当点Q在x轴下方时,轴,与BP的延长线交于点.
,
,
在与中
≌
,
,,
,
解得
此时点P与点C重合,
;
当点Q在x轴上方时,轴,与PB的延长线交于点.
同理可证≌.
同理求得
综上,P的坐标为:,
本题考查了一次函数与三角形的全等,熟练掌握一次函数的性质与三角形全等判定是解题的关键.
26、 (1)证明见解析;(2);(3).
【解析】
(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形;
(2)在Rt△ABC中,求出BC,AC即可解决问题;
(3)取的中点,连结,,,根据三角形三边关系进行求解即可得.
【详解】
(1)在中,,,,
在等边中,,,
为的中点,,
又,
,
在中,,为的中点,,,
,,,
又,,
又,,
,
又,,即,
四边形是平行四边形;
(2)在中,,,
,
∴,
;
(3)取的中点,连结,,
,
的最大长度.
本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
甲
1
0
4
2
3
乙
3
2
1
2
2
相关试卷
这是一份四川省广安市华蓥市2025届九年级数学第一学期开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省广安市广安中学2025届九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省广安市代市中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)