搜索
    上传资料 赚现金
    英语朗读宝

    四川省宜宾市第八中学2024年九上数学开学监测模拟试题【含答案】

    四川省宜宾市第八中学2024年九上数学开学监测模拟试题【含答案】第1页
    四川省宜宾市第八中学2024年九上数学开学监测模拟试题【含答案】第2页
    四川省宜宾市第八中学2024年九上数学开学监测模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省宜宾市第八中学2024年九上数学开学监测模拟试题【含答案】

    展开

    这是一份四川省宜宾市第八中学2024年九上数学开学监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是 ( )
    A.19%B.20%C.21%D.22%
    2、(4分)矩形 ABCD中,O为 AC 的中点,过点O的直线分别与AB,CD交于点E,F,连接 BF交AC于点M连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①△AOE≌△COF;②△EOB≌△CMB;③FB⊥OC,OM=CM;④四边形 EBFD 是菱形;⑤MB:OE=3:2其中正确结论的个数是( )
    A.5B.4C.3D.2
    3、(4分)已知点,,都在直线上,则,,的大小关系是( )
    A.B.C.D.
    4、(4分)下列图形中,第(1)个图形由4条线段组成,第(2)个图形由10条线段组成,第(3)个图形由18条线段组成,…………第(6)个图形由( )条线段组成.
    A.24B.34C.44D.54
    5、(4分)要使分式有意义,则x的取值应满足( )
    A.x≠2B.x=2C.x=1D.x≠1
    6、(4分)若a>b,则下列各式中一定成立的是( )
    A.a+2<b+2B.a-2<b-2C.>D.-2a>-2b
    7、(4分)若,则的值为( )
    A.B.C.D.
    8、(4分)下列计算正确的是( )
    A.=2B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知平行四边形,,是边的中点,是边上一动点,将线段绕点逆时针旋转至,连接,,,,则的最小值是____.
    10、(4分)如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则D到AB的距离为____cm.
    11、(4分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③.则三个结论中一定成立的是____________.
    12、(4分)如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
    13、(4分)对于实数a,b,定义运算“﹡”:.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=1.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,正方形中,点、、分别是、、的中点,、交于,连接、.下列结论:①;②;③;④.正确的有( )
    A.1个B.2个C.3个D.4个
    15、(8分)在△ABC中,AB=30,BC=28,AC=1.求△ABC的面积.
    某学习小组经过合作交流给出了下面的解题思路,请你按照他们的解题思路完成解答过程.
    16、(8分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
    (1)求反比例函数与一次函数的表达式;
    (2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
    (3)结合图像写出不等式的解集;
    17、(10分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
    (1)求购买A型和B型公交车每辆各需多少万元?
    (2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
    (3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
    18、(10分)某中学开展“一起阅读,共同成长”课外读书周活动,活动后期随机调查了八年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:

    (1)本次调查的学生总数为______人,在扇形统计图中,课外阅读时间为5小时的扇形圆心角度数是______;
    (2)请你补全条形统计图;
    (3)若全校八年级共有学生人,估计八年级一周课外阅读时间至少为小时的学生有多少人?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)八年级(1)班四个绿化小组植树的棵数如下:8,8,10, x .已知这组数据的众数和 平均数相等,那么这组数据的方差是_____.
    20、(4分)如图,以的两条直角边分别向外作等腰直角三角形.若斜边,则图中阴影部分的面积为_____.
    21、(4分)如图,在▱ABCD中,∠A=72°,将□ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=_____°.
    22、(4分)若关于 x 的分式方程的解为正数,则 m 的取值范围是_____.
    23、(4分)若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为______cm.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:
    (1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?
    (2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.
    (3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.
    25、(10分)在▱ABCD中,点E为AB边的中点,连接CE,将△BCE沿着CE翻折,点B落在点G处,连接AG并延长,交CD于F.
    (1)求证:四边形AECF是平行四边形;
    (2)若CF=5,△GCE的周长为20,求四边形ABCF的周长.
    26、(12分)如图,是边长为的等边三角形.
    (1)求边上的高与之间的函数关系式。是的一次函数吗?如果是一次函数,请指出相应的与的值.
    (2)当时,求的值.
    (3)求的面积与之间的函数关系式.是的一次函数吗?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.
    设这两年平均每年绿地面积的增长率是x,由题意得
    (1+x)2=1+44%
    解得x1=0.2,x2=-2.2(舍)
    故选B.
    考点:一元二次方程的应用
    点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.
    2、B
    【解析】
    作辅助线找全等三角形和特殊的直角三角形解题,见详解.
    【详解】
    解:连接BD
    ∵四边形ABCD是矩形
    ∴AC=BD,AC、BD互相平分
    ∵O为AC中点
    ∴BD也过O点
    ∴OB=OC
    ∵∠COB=60°,OB=OC
    ∴△OBC是等边三角形
    ∴OB=BC=OC,∠OBC=60°
    ∵FO=FC,BF=BF
    ∴△OBF≌△CBF(SSS)
    ∴△OBF与△CBF关于直线BF对称
    ∴FB⊥OC,OM=CM.故③正确
    ∵∠OBC=60°
    ∴∠ABO=30°
    ∵△OBF≌△CBF
    ∴∠OBM=∠CBM=30°
    ∴∠ABO=∠OBF
    ∵AB∥CD
    ∴∠OCF=∠OAE
    ∵OA=OC
    可得△AOE≌△COF,故①正确
    ∴OE=OF
    则四边形EBFD是平行四边形,又可知OB⊥EF
    ∴四边形EBFD是菱形.故④正确
    ∴△EOB≌△FOB≌△FCB.则②△EOB≌△CMB错误
    ∵∠OMB=∠BOF=90°,∠OBF=30°,
    设MB=a,则OM=a,OB=2a,
    OF=OM,
    ∵OE=OF
    ∴MB:OE=3:2.则⑤正确
    综上一共有4个正确的,
    故选B.
    本题考查了四边形的综合应用,特殊的直角三角形,三角形的全等,菱形的判定,综合性强,难度大,认真审题,证明全等找到边长之间的关系是解题关键.
    3、C
    【解析】
    中,,所以y随x的增大而减小,依据三点的x值的大小即可确定y值的大小关系.
    【详解】
    解:
    y随x的增大而减小

    故答案为:C
    本题考查了一次函数的性质,正确理解并应用其性质是解题的关键.
    4、D
    【解析】
    由题意可知:第一个图形有4条线段组成,第二个图形有4+6=10条线段组成,第三个图形有4+6+8=18条线段组成,第四个图形有4+6+8+10=28条线段组成…由此得出,第6个图形4+6+8+10+12+14=54条线段组成,由此得出答案即可.
    【详解】
    解:∵第一个图形有4条线段组成,
    第二个图形有4+6=10条线段组成,
    第三个图形有4+6+8=18条线段组成,
    第四个图形有4+6+8+10=28条线段组成,

    由此得出,
    ∴第6个图形4+6+8+10+12+14=54条线段组成,
    故选:D.
    此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题是解答此题的关键.
    5、A
    【解析】
    根据分式的性质,要使分式有意义,则分式的分母不等于0.
    【详解】
    根据题意可得要使分式有意义,则
    所以可得
    故选A.
    本题主要考查分式的性质,关键在于分式的分母不能为0.
    6、C
    【解析】
    已知a>b,
    A. a+2>b+2,故A选项错误;
    B. a−2>b−2,故B选项错误;
    C. >,故C选项正确;
    D. −2a1
    【解析】
    先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.
    【详解】
    解:去分母得,m-1=2x+2,
    解得,x=,
    ∵方程的解是正数,
    ∴m-1>2,
    解这个不等式得,m>1,
    ∵+1≠2,
    ∴m≠1,
    则m的取值范围是m>1.
    故答案为:m>1.
    本题考查了分式方程的解,解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.注意分式方程分母不等于2.
    23、1
    【解析】
    根据等腰三角形的性质先求出BD,然后在Rt△ABD中,可根据勾股定理进行求解.
    【详解】
    解:如图:
    由题意得:AB=AC=10cm,BC=11cm,
    作AD⊥BC于点D,则有DB=BC=8cm,
    在Rt△ABD中,AD==1cm.
    故答案为1.
    本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理求直角三角形的边长.
    二、解答题(本大题共3个小题,共30分)
    24、(1)100人闯红灯(2)见解析;(3)众数为15人,中位数为20人
    【解析】
    (1)根据11﹣12点闯红灯的人数除以所占的百分比即可求出7﹣12这一时间段共有的人数.
    (2)根据7﹣8点所占的百分比乘以总人数即可求出7﹣8点闯红灯的人数,同理求出8﹣9点的人数,然后可计算出10﹣11点的人数,补全条形统计图即可;求出9﹣10及10﹣11点的百分比,分别乘以360度即可求出圆心角的度数.
    (3)找出这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数即可.
    【详解】
    解:(1)根据题意得:40÷40%=100(人),
    ∴这一天上午7:00~12:00这一时间段共有100人闯红灯.
    (2)根据题意得:7﹣8点的人数为100×20%=20(人),
    8﹣9点的人数为100×15%=15(人),
    9﹣10点占=10%,
    10﹣11点占1﹣(20%+15%+10%+40%)=15%,人数为100×15%=15(人).
    补全图形,如图所示:
    9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°.
    (3)根据图形得:这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数为15人,中位数为20人.
    25、(1)见解析;(2)1
    【解析】
    (1)由平行四边形的性质得出AE∥FC,再由三角形的外角的性质,以及折叠的性质,可以证明∠FAE=∠CEB,进而证明AF∥EC,即可得出结论;
    (2)由折叠的性质得:GE=BE,GC=BC,由△GCE的周长得出GE+CE+GC=20,BE+CE+BC=20,由平行四边形的性质得出AF=CE,AE=CF=5,即可得出结果.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AE∥FC,
    ∵点E是AB边的中点,
    ∴AE=BE,
    ∵将△BCE沿着CE翻折,点B落在点G处,
    ∴BE=GE,∠CEB=∠CEG,
    ∴AE=GE,
    ∴∠FAE=∠AGE,
    ∵∠CEB=∠CEG=∠BEG,∠BEG=∠FAE+∠AGE,
    ∴∠FAE=∠BEG,
    ∴∠FAE=∠CEB,
    ∴AF∥EC,
    ∴四边形AECF是平行四边形;
    (2)解:由折叠的性质得:GE=BE,GC=BC,
    ∵△GCE的周长为20,
    ∴GE+CE+GC=20,
    ∴BE+CE+BC=20,
    ∵四边形AECF是平行四边形,
    ∴AF=CE,AE=CF=5,
    ∴四边形ABCF的周长=AB+BC+CF+AF=AE+BE+BC+CE+CF=5+20+5=1.
    本题主要考查了翻折变换的性质、平行四边形的判定与性质、平行线的判定、等腰三角形的性质以及三角形的外角性质等知识;熟练掌握翻折变换的性质,证明四边形AECF是平行四边形是解题的关键.
    26、(1),是的一次函数,,b=0;(2)x=2;(3),不是的一次函数.
    【解析】
    (1)根据勾股定理计算h的长,可得结论;
    (2)直接将h的值代入可得结论;
    (3)根据三角形面积公式计算可得结论.
    【详解】
    解:(1)因为边上的高也是边上的中线,所以,.在中,由勾股定理得,
    即,
    所以是的一次函数,且,b=0;
    (2)h=时,;x=2;
    (3)因为,所以不是的一次函数.
    本题主要考查了等边三角形的性质,三角形的面积,一次函数的性质,能灵活应用这些性质是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    四川省宜宾市南溪区三中学2024-2025学年九上数学开学经典模拟试题【含答案】:

    这是一份四川省宜宾市南溪区三中学2024-2025学年九上数学开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届四川省宜宾市高县九上数学开学监测模拟试题【含答案】:

    这是一份2025届四川省宜宾市高县九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届四川省宜宾市翠屏区数学九上开学监测试题【含答案】:

    这是一份2025届四川省宜宾市翠屏区数学九上开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map