四川省宜宾市观音片区2024年数学九上开学调研试题【含答案】
展开
这是一份四川省宜宾市观音片区2024年数学九上开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某校规定学生的数学学期评定成绩满分为100,其中平时成绩占50%,期中考试成绩占20%,期末考试成绩占30%.小红的三项成绩(百分制)依次是86、70、90,小红这学期的数学学期评定成绩是( )
A.90B.86C.84D.82
2、(4分)人文书店三月份销售某畅销书100册,五月份销售量达196册,设月平均增长率为x,则可列方程( )
A.100(1+x)=196B.100(1+2x)=196
C.100(1+x2)=196D.100(1+x)2=196
3、(4分)如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是( )
A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5
C.a:b:c=::D.a=6,b=10,c=12
4、(4分)在ABCD中,∠A:∠B:∠C:∠D的度数比值可能是( )
A.1:2:3:4B.1:2:2:1C.1:1:2:2D.2:1:2:1
5、(4分)某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图像如图所示,由图中给出的信息可知,营销人员没有销售时的收入是( )
A.310元B.300元C.290元D.280元
6、(4分)如果一个正多边形的内角和是这个正多边形外角和的2倍,那么这个正多边形是( )
A.等边三角形B.正四边形C.正六边形D.正八边形
7、(4分)下列多项式中,能用公式法分解因式的是( )
A.B.C.D.
8、(4分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是( )
A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若分式的值为,则的值为_______.
10、(4分)为了解一批灯管的使用寿命,适合采用的调查方式是_____(填“普查”或“抽样调查”)
11、(4分)有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为 .
12、(4分)函数的图像与如图所示,则k=__________.
13、(4分)一次函数,若y随x的增大而增大,则的取值范围是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)已知A.B两地果园分别有苹果30吨和40吨,C.D两地的农贸市场分别需求苹果20吨和50吨。已知从A.B两地到C.D两地的运价如表:
(1)填空:若从A果园运到C地的苹果为10吨,则从A果园运到D地的苹果为___吨,从B果园运到C地的苹果为___吨,从B果园运到D地的苹果为___吨,总运输费为___元;
(2)如果总运输费为750元时,那么从A果园运到C地的苹果为多少吨?
15、(8分)解不等式组,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.
16、(8分)如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连结DF,DE, EF. 过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).
(1) 填空:当t= 时,AF=CE,此时BH= ;
(2)当△BEF与△BEH相似时,求t的值;
(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.
① 求S关于t的函数关系式;
② 直接写出周长C的最小值.
17、(10分)计算:(1)
(2)已知,试求以a、b、c为三边的三角形的面积.
18、(10分)已知:如图,在△ABC中,AB=AC=4cm,将△ABC沿CA方向平移4cm得到△EFA,连接BE,BF;BE与AF交于点G
(1)判断BE与AF的位置关系,并说明理由;
(2)若∠BEC=15°,求四边形BCEF的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若有意义,则x 的取值范围是 .
20、(4分)若x-y=,xy=,则代数式(x-1)(y+1)的值等于_____.
21、(4分)己知某汽车油箱中的剩余油量y(升)与该汽车行驶里程数x(千米)是一次函数关系,当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,该汽车已行驶了____千米
22、(4分)如图,在中,,,,,分别为,,的中点,,则的长度为__.
23、(4分)如图,在四边形中,,于点,动点从点出发,沿的方向运动,到达点停止,设点运动的路程为,的面积为,如果与的函数图象如图2所示,那么边的长度为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式:
25、(10分)在▱ABCD中,的平分线与BA的延长线交于点E,CE交AD于F
求证:;
若于点H,,求的度数.
26、(12分)某学校计划在总费用元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆车上至少要有名教师.现有甲乙两种大客车,它们的载客量和租金如下表所示.
(1)填空:要保证师生都有车坐,汽车总数不能小于______;若要每辆车上至少有名教师,汽车总数不能大于______.综合起来可知汽车总数为_________.
(2)请给出最节省费用的租车方案.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据加权平均数的计算方法列出算式,再进行计算即可得出答案.
【详解】
解:小红这学期的数学学期评定成绩是:86×50%+70×20%+90×30%=84(分);
故选:C.
本题考查的是加权平均数的求法.熟记公式是解决本题的关键.
2、D
【解析】
设月平均增长率为x,分别表示出四、五月份的销售量,根据五月份的销售量列式即可.
【详解】
解:设月平均增长率为x,则四月份销售量为100(1+x), 五月份的销售量为:
100(1+x)2=196.
故答案为:D
本题考查了列一元二次方程,理清题中等量关系是列方程的关键.
3、D
【解析】
根据勾股定理的逆定理和三角形的内角和定理进行判定即可.
【详解】
解:A、∵∠A=25°,∠B=65°,
∴∠C=180°﹣∠A﹣∠B=90°,
∴△ABC是直角三角形,故A选项正确;
B、∵∠A:∠B:∠C=2:3:5,
∴,
∴△ABC是直角三角形;故B选项正确;
C、∵a:b:c=::,
∴设a=k,b=k,c=k,
∴a2+b2=5k2=c2,
∴△ABC是直角三角形;故C选项正确;
D、∵62+102≠122,
∴△ABC不是直角三角形,故D选项错误.
故选:D.
本题主要考查直角三角形的判定方法,熟练掌握勾股定理的逆定理、三角形的内角和定理是解题的关键.
4、D
【解析】
根据平行四边形的两组对角分别相等判定即可
【详解】
解:根据平行四边形的两组对角分别相等,可知D正确.
故选:D.
此题主要考查了平行四边形的性质,熟知平行四边形的两组对角分别相等这一性质是解题的关键.
5、B
【解析】
试题分析:观察图象,我们可知当销售量为1万时,月收入是800,当销售量为2万时,月收入是11,所以每销售1万,可多得11-800=500,即可得到结果.
由图象可知,当销售量为1万时,月收入是800,当销售量为2万时,月收入是11,
所以每销售1万,可多得11-800=500,因此营销人员没有销售业绩时收入是800-500=1.
故选B.
考点:本题考查的是一次函数的应用
点评:本题需仔细观察图象,从中找寻信息,并加以分析,从而解决问题.
6、C
【解析】
设这个多边形的边数为n.根据题意列出方程即可解决问题.
【详解】
设这个多边形的边数为n,
由题意(n﹣2)•180°=2×360°,
解得n=6,
所以这个多边形是正六边形,
故选C.
本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.
7、D
【解析】
利用平方差公式及完全平方公式的结构特征判断即可.
【详解】
解:=(n+m)(n−m),
故选D.
此题考查了因式分解−运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.
8、B
【解析】
找出方程的二次项系数,一次项系数,以及常数项即可.
【详解】
方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是1,2,﹣3,
故选:B.
此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(其中a,b,c为常数,且a≠0).解题关键在于找出系数及常熟项
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
由题意可得3-2x=1,
解得x=,
又∵2+3x≠1,
解得x=.
此题考查分式的值为零的条件,解题关键在于掌握运算法则
10、抽样调查.
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,
故答案为:抽样调查.
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
11、AB=2BC.
【解析】
过A作AE⊥BC于E、作AF⊥CD于F,
∵甲纸条的宽度是乙纸条宽的2倍,
∴AE=2AF,
∵纸条的两边互相平行,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AD=BC,
∵∠AEB=∠AFD=90°,
∴△ABE∽△ADF,
∴,即.
故答案为AB=2BC.
考点:相似三角形的判定与性质.
点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.
12、
【解析】
首先根据一次函数y=2x与y=6-kx图象的交点纵坐标为4,代入一次函数y=2x求得交点坐标为(2,4),然后代入y=6-kx求得k值即可.
【详解】
∵一次函数y=2x与y=6-kx图象的交点纵坐标为2,
∴4=2x,
解得:x=2,
∴交点坐标为(2,4),
代入y=6-kx,6-2k=4,解得k=1.
故答案为:1.
本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=2x与y=6-kx两个解析式.
13、.
【解析】
一次函数的图象有两种情况:
①当时,函数的值随x的值增大而增大;
②当时,函数的值随x的值增大而减小.
由题意得,函数的y随x的增大而增大,.
三、解答题(本大题共5个小题,共48分)
14、(1)20,10,30,760;(2)从A果园运到C地的苹果数为5吨
【解析】
(1)A地果园有苹果30吨,运到C地的苹果为10吨,则从A果园运到D地的苹果为30-10吨,从B果园运到C地的苹果为20-10吨,从B果园运到D地的苹果为50-20吨,然后计算运输费用;
(2)表示出从A到C、D两地,从B到C、D两地的吨数,乘以运价就是总费用;根据总运输费为750元列出方程,求值即可.
【详解】
(1)从A果园运到D地的苹果为30−10=20(吨),
从B果园运到C地的苹果为20−10=10(吨),
从B果园运到D地的苹果为50−20=30(吨),
总费用为:10×15+20×12+10×10+30×9=760(元),
故答案为:20,10,30,760;
(2)设从A果园运到C地的苹果数为x吨,则
总费用为:15x+(360−12x)+10(20−x)+9×[40−(20−x)]+740
由题意得2x+740=750,
解得x=5.
答:从A果园运到C地的苹果数为5吨。
此题考查一元一次方程的应用,解题关键在于列出方程
15、;见解析;.
【解析】
首先求出每个不等式的解集,找到公共解集,然后在数轴上表示出来,根据数轴写出正整数解即可.
【详解】
解: ,
解不等式①,得
解不等式②,得
所以,原不等式组的解集是
在数轴上表示为:
不等式组的正整数解是
本题考查解一元一次不等式组、在数轴上表示不等式组的解集、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式组的方法.
16、 (1) 、;(2);(3)① ;② .
【解析】
(1)在Rt△ABC中,利用勾股定理可求得AB的长,即可得到AD、t的值,从而确定AE的长,由DE=AE-AD即可得解.
(2)若△DEG与△ACB相似,要分两种情况:①AG:DE=DH:GE,②AH:EG=DH:DE,根据这些比例线段即可求得t的值.(需注意的是在求DE的表达式时,要分AD>AE和AD<AE两种情况);
(3)分别表示出线段FD和线段AD的长,利用面积公式列出函数关系式即可.
【详解】
(1)∵BC=AD=9,BE=4,
∴CE=9-4=5,
∵AF=CE,
即:3t=5,
∴t=,
∴,
即:,
解得BH=;
当t=时,AF=CE,此时BH=.
(2)由EH∥DF得∠AFD=∠BHE,又∵∠A=∠CBH=90°
∴△EBH∽△DAF ∴即∴BH=
当点F在点B的左边时,即t<4时,BF=12-3t
此时,当△BEF∽△BHE时:即解得:
此时,当△BEF∽△BEH时: 有BF=BH, 即解得:
当点F在点B的右边时,即t>4时,BF=3t-12
此时,当△BEF∽△BHE时:即解得:
(3)① ∵EH∥DF
∴△DFE的面积=△DFH的面积=;
② 如图
∵BE=4,
∴CE=5,根据勾股定理得,DE=13,是定值,
所以当C最小时DE+EF最小,作点E关于AB的对称点E'
连接DE,此时DE+EF最小,
在Rt△CDE'中,CD=12,CE'=BC+BE'=BC+BE=13,
根据勾股定理得,DE'=,
∴C的最小值=.
此题考查了勾股定理、轴对称的性质、平行四边形及梯形的判定和性质、解直角三角形、相似三角形等相关知识,综合性强,是一道难度较大的压轴题.
17、(1);(2)以a、b、c为三边的三角形的面积为1.
【解析】
(1)先根据二次根式的乘除法则和完全平方公式计算,然后化简后合并即可;
(2)利用非负数的性质得到a−1=0,b−2=0,c−=0,解得a=1,b=2,c=,利用勾股定理的逆定理得到以a、b、c为三边的三角形为直角三角形,其中c为斜边,然后根据三角形面积公式计算.
【详解】
解:(1)原式;
(2)由题意得:,
,,,
,,,
,,
∴以a、b、c为三边的三角形是直角三角形.
∴它的面积是.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了勾股定理的逆定理.
18、(1)BE⊥AF,理由详见解析;(2)1.
【解析】
(1)由△ABC沿CA方向平移4cm得到△EFA,即可得BF=CA=AE,AB=EF,又由AB=AC,证得AB=BF=EF=AE,根据有四条边都相等的四边形是菱形,即可证得四边形ABFE是菱形,再根据菱形的对角线互相垂直可得BE⊥AF;
(2)首先作BM⊥AC于点M,由AB=AE,∠BEC=15°,求得∠BAC=30°,那么BM=AB=2cm,然后利用梯形的面积公式即可求得四边形BCEF的面积.
【详解】
解:(1)BE⊥AF.理由如下:
∵将△ABC沿CA方向平移4cm得到△EFA,
∴BF=CA=AE=4cm,AB=EF.
∵AB=AC,
∴AB=BF=EF=AE,
∴四边形ABFE是菱形,
∴BE⊥AF;
(2)作BM⊥AC于点M.
∵AB=AE,∠BEC=15°,
∴∠ABE=∠AEB=15°,
∴∠BAC=30°.
∴BM=AB=2cm.
∵BF=CA=AE=4cm,
∴四边形BCEF的面积=(BF+CE)•BM
=×1×2
=1.
此题考查了菱形的判定与性质,平移的性质,等腰三角形的性质,梯形面积的求法等知识.此题难度不大,掌握平移的性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≥8
【解析】
略
20、2-2
【解析】
解:
∵=,
原式
故答案为:
21、500
【解析】
根据当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,根据题意列出式子进行计算即可.
【详解】
(250-200)÷(126-120)×(120-90)+250=500,
故答案为:500.
此题考查有理数的混合运算,解题关键在于根据题意列出式子.
22、6
【解析】
因为在中
,
∴AB=2BC
又D为AB中点,
∴CD=AD=BD=BC=AB
又E,F分别为AC,AD的中点,
∴EF=CD,所以CD=2EF=6
故BC为6
本题主要考查三角形的基本概念和直角三角形。
23、6
【解析】
根据题意,分析P的运动路线,分3个阶段分别进行讨论,可得BC,CD,DA的值,过D作DE⊥AB于E,根据勾股定理求出AE,即可求解.
【详解】
根据题意,当P在BC上时,三角形的面积增大,结合图2可得BC=4;
当P在CD上时,三角形的面积不变,结合图2可得CD=3;
当P在AD上时,三角形的面积变小,结合图2可得AD=5;
过D作DE⊥AB于E,
∵AB∥CD,AB⊥BC,
∴四边形DEBC为矩形,
∴EB=CD=3,DE=BC=4,
∴AE=
∴AB=AE+EB=6.
此题主要考查矩形的动点问题,解题的关键是根据题意作出辅助线进行求解.
二、解答题(本大题共3个小题,共30分)
24、.
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
,
,
,
.
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
25、证明见解析25°
【解析】
欲证明,只要证明即可;
想办法求出即可解决问题;
【详解】
解:四边形ABCD是平行四边形,
,,
,,
,
,
.
,
,
,
,
平分,
,
,
∴
本题考查了平行四边形的性质、角平分线的定义以及等腰三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
26、(1)6,6,6;(2)租乙种客车2辆,甲种客车4辆.
【解析】
(1)根据师生总人数240人,以及所需租车数=人数÷载客量算出载客量最大的车所需辆数即可得租车总数最小值,再结合每辆车至少有一名老师即可租车数量最大值;
(2)设租乙种客车x辆,根据师生总数240人以及总费用2300元即可列出关于x的不等式组,从而得出x范围,之后进一步求出租车方案即可.
【详解】
(1)∵(辆)……15(人),
∴为保证师生都有车坐,汽车总数不能小于6辆;
又∵每辆车上至少有名教师,共有6名教师,
∴租车总数不可大于6,
故答案为:6,6,6;
(2)设租乙种客车x辆,
则:,且,
∴,
∵是整数,
∴,或,
设租车费用为y元,
则,
∴当时,y最小,且,
故租乙种客车2辆,甲种客车4辆时,所需费用最低.
本题主要考查了一元一次不等式组在方案问题中的实际运用,熟练掌握相关概念是解题关键.
题号
一
二
三
四
五
总分
得分
甲种客车
乙种客车
载客量/(人/量)
30
租金/(元/辆)
400
280
相关试卷
这是一份四川省观音片2024年九上数学开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,九月份共生产零件万个,设八,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省观音片九上数学开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年四川省宜宾市观音片区九上数学期末联考试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在中,,,,对于二次函数y=等内容,欢迎下载使用。