四川营山小桥中学2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】
展开
这是一份四川营山小桥中学2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若,则的值为( )
A.1B.-1C.-7D.7
2、(4分)在某次实验中,测得两个变量m和v之间的4组对应数据如右表,则m与v之间的关系最接近于下列各关系式中的( )
A.B.C.D.
3、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长是( )
A.6B.5C.4D.3
4、(4分)禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为( )
A.1.02×10﹣7mB.10.2×10﹣7mC.1.02×10﹣6mD.1.0×10﹣8m
5、(4分)如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为
A.B.C.D.
6、(4分)使代数式有意义的x的取值范围是( )
A.B.C.且D.一切实数
7、(4分)今年我市有近2万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )
A.这1000名考生是总体的一个样本B.近2万名考生是总体
C.每位考生的数学成绩是个体D.1000名学生是样本容量
8、(4分)如图,已知平行四边形,,,,点是边上一动点,作于点,作(在右边)且始终保持,连接、,设,则满足( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在菱形中,,,点在上,以为对角线的所有中,最小的值是______.
10、(4分)如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.
11、(4分)已知一组数据3、a、4、6的平均数为4,则这组数据的中位数是______.
12、(4分)约分:=_________.
13、(4分)在 中,若是 的正比例函数,则常数 _____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在□ABCD中,AB=10,AD=8,AC⊥BC,求□ABCD的面积.
15、(8分)一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量保持不变,容器内水量(单位:)与时间(单位:)的部分函数图象如图所示,请结合图象信息解答下列问题:
(1)求出水管的出水速度;
(2)求时容器内的水量;
(3)从关闭进水管起多少分钟时,该容器内的水恰好放完?
16、(8分)如图,点在同一直线上,,,.求证:.
17、(10分)关于的一元二次方程
求证:方程总有两个实数根
若方程两根且,求的值
18、(10分)如图,将一个三角板放在边长为1的正方形上,并使它的直角顶点在对角线上滑动,直角的一边始终经过点,另一边与射线相交于点.
(1)当点在边上时,过点作分别交,于点,,证明:;
(2)当点在线段的延长线上时,设、两点间的距离为,的长为.
①直接写出与之间的函数关系,并写出函数自变量的取值范围;
②能否为等腰三角形?如果能,直接写出相应的值;如果不能,说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为_____.
20、(4分)解分式方程时,设,则原方程化为关于的整式方程是__________.
21、(4分)在平面直角坐标系中,先将函数y=2x+3的图象向下平移3个单位长度,再沿y轴翻折,所得函数对应的解析式为_____.
22、(4分)已知,则________.
23、(4分)若△ABC的三边长分别为5、13、12,则△ABC的形状是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)为了了解初中阶段女生身高情况,从某中学初二年级120名女生中随意抽出40名同龄女生的身高数据,经过分组整理后的频数分布表及频数分布直方图如图所示:
结合以上信息,回答问题:
(1)a=______,b=______,c=______.
(2)请你补全频数分布直方图.
(3)试估计该年级女同学中身高在160~165cm的同学约有多少人?
25、(10分)如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的图象交于点C和点D(1,a).
(1)求直线AB和反比例函数的解析式.
(2)求∠ACO的度数.
26、(12分)已知,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先根据非负数的性质,可列方程组求出x、y的值,进而可求出x-y的值.
【详解】
由题意,得:,
解得;
所以x-y=4-(-3)=7;
故选:D.
此题主要考查非负数的性质:非负数的和为1,则每个非负数必为1.
2、B
【解析】
根据表格得到对应v的大致取值,找到规律即可求解.
【详解】
根据表格可得到m,v的大致值为
m=1时,v=12+1,
m=2时,v=22+1,
m=3时,v=32+1,
m=4时,v=42+1,
故最接近
故选B.
此题主要考查函数的解析式,解题的关键是根据题意发现规律进行求解.
3、C
【解析】
根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
解:,是的中点,
.
故选:.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
4、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000000102m=1.02×10﹣7m;
故选A.
本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
5、B
【解析】
根据折叠前后对应角相等即可得出答案.
【详解】
解:设∠ABE=x,
根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故选B.
本题考核知识点:轴对称. 解题关键点:理解折叠的意义.
6、C
【解析】
根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.
7、C
【解析】
试题分析:1000名考生的数学成绩是总体的一个样本;近8万多名考生的数学成绩是总体;每位考生的数学成绩是个体;1000是样本容量.
考点:(1)、总体;(2)、样本;(3)、个体;(4)、样本容量.
8、D
【解析】
设PE=x,则PB=x,PF=3x,AP=6-x,由此先判断出,然后可分析出当点P与点B重合时,CF+DF最小;当点P与点A重合时,CF+DF最大.从而求出m的取值范围.
【详解】
如上图:设PE=x,则PB=x,PF=3x,AP=6-x
∵
∴
由AP、PF的数量关系可知,
如上图,作交BC于M,所以点F在AM上.
当点P与点B重合时,CF+DF最小.此时可求得
如上图,当点P与点A重合时,CF+DF最大.此时可求得
∴
故选:D
此题考查几何图形动点问题,判断出,然后可分析出当点P与点B重合时,CF+DF最小;当点P与点A重合时,CF+DF最大是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据题意可得当时,EF的值最小,利用直角三角形的勾股即可解的EF的长.
【详解】
根据题意可得当时,EF的值最小
,AD=AB=
EF=
本题主要考查最短直线问题,关键在于判断当时,EF的值最小.
10、1
【解析】
根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.
【详解】
解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,
∴△ABC≌△A1BC1,
∴A1B=AB=6,
∴△A1BA 是等腰三角形,∠A1BA=30°,
∴S△A1BA= ×6×3=1,
又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,
S△A1BC1=S△ABC,
∴S 阴影=S△A1BA=1. 故答案为1.
本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.
11、3.5
【解析】
先根据平均数的计算公式求出x的值,再根据中位数的定义即可得出答案.
【详解】
∵数据3、a、4、6的平均数是4,
∴(3+a+4+6)÷4=4,
∴x=3,
把这组数据从小到大排列为:3、3、4、6最中间的数是3.5,
则中位数是3.5;
故答案为:3.5.
此题考查中位数,算术平均数,解题关键在于利用平均数求出a的值.
12、.
【解析】
由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
【详解】
解:原式=,
故答案为:.
本题考查约分,正确找出公因式是解题的关键.
13、2
【解析】
试题分析:本题主要考查的就是正比例函数的定义,一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得a﹣2=0,解出即可.
考点:正比例函数的定义.
三、解答题(本大题共5个小题,共48分)
14、48
【解析】
根据平行四边形的性质可得BC=AD=8,然后根据垂直的定义可得∠ACB=90°,再利用勾股定理即可求出AC,最后利用平行四边形的面积公式求面积即可.
【详解】
解:∵四边形ABCD为平行四边形
∴BC=AD=8
∵AC⊥BC
∴∠ACB=90°
在Rt△ACB中,AC==6
∴S□ABCD=BC·AC=48
此题考查的是平行四边形的性质、勾股定理和求平行四边形的面积,掌握平行四边形的对应边相等、利用勾股定理解直角三角形和平行四边形的面积公式是解决此题的关键.
15、(1);(2);(3)
【解析】
(1)设出水管的出水速度为,根据10分钟内的进水量-10分钟内的出水量=20升列方程求解即可;
(2)设当时,与的函数解析式为,用待定系数法求出函数解析式,再令x=8计算即可;
(3)用容器的储水量30升除以(1)中求出的出水速度即可.
【详解】
解:(1)设出水管的出水速度为.
,
解得.
答:出水管的出水速度为.
(2)设当时,与的函数解析式为.
将点,代入,得,解得.
∴.
∴当时,.
答:时容器内的水量为.
(3).
答:从关闭进水管起时,该容器内的水恰好放完.
本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
16、详见解析
【解析】
先证出,由证明Rt△ABC≌Rt△DFE,得出对应边相等即可.
【详解】
解:证明:,
∴△ABC和△DEF都是直角三角形,
,
即,
在Rt△ABC和Rt△DFE中,
,
∴Rt△ABC≌Rt△DFE(HL),
∴.
本题考查了全等三角形的判定与性质;熟练掌握直角三角形全等的判定方法是解决问题的关键.
17、 (1)证明见解析;(2)k=±4.
【解析】
(1)证明根的判别式△≥0即可;
(2)由根与系数的关系可得,,继而利用完全平方公式的变形可得关于k的方程,解方程即可.
【详解】
(1),
,
∵,
∴Δ≥0,
方程总有两个实数根;
(2),,
∴,
∴.
本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握相关知识是解题的关键.
18、(1)见解析;(2)①.②能为等腰三角形,.
【解析】
(1)根据正方形的性质证明,即可求解;
(2)①根据题意作图,由正方形的性质可知当时,点在线段的延长线上,同理可得,得到MP=NQ,利用等腰直角三角形的性质可知MP=x,NC=CD-DN=1-x,CQ=y,代入MP=NQ化简即可求解;
②由是等腰三角形,∠PCQ=135°,CP=CQ成立,代入解方程即可求解 ,
【详解】
(1)证明:∵在正方形中,为对角线,
∴,,∵,
∴,,
∴,
又∵,
∴.
∵,∴.
又∵,∴,
∴,
在中,
∵
∴,∴.
(2)①如图,点在线段的延长线上,
同(1)可证,
∴MP=NQ,
在等腰直角三角形AMP中,AP==x
∴MP=x=AM,
∴NC=BM=AB-AM=1-x
故NQ=NC+CQ=1-x+y
∴x=1-x+y
化简得
当P点位于AC中点时,Q点恰好在C点,又AP<AC=
∴
∴与之间的函数关系是()
②当时,能为等腰三角形,
理由:当点在的延长线上,CQ=,CQ=AC-AP=,
由是等腰三角形,∠PCQ=∠PCB+∠BCQ=45°+90°=135°,
∴CP=CQ成立,
即时,解得.
此题主要考查正方形的性质综合,解题的关键是熟知全等三角形的判定与性质、等腰三角形的性质与判定.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先求出每次延长后的面积,再发现规律即可求解.
【详解】
解:最初边长为1,面积1,
延长一次为,面积5,
再延长为51=5,面积52=25,
下一次延长为5,面积53=125,
以此类推,
当N=4时,正方形A4B4C4D4的面积为:54=1.
故答案为:1.
此题主要考查勾股定理的应用,解题的关键是根据题意找到规律进行求解.
20、
【解析】
根据换元法,可得答案.
【详解】
解:设,则原方程化为,
两边都乘以y,得:,
故答案为:.
本题考查了解分式方程,利用换元法是解题关键.
21、y=-2x.
【解析】
利用平移规律得出平移后的关系式,再利用关于y轴对称的性质得出答案。
【详解】
将函数y=2x+3的图象向下平移3个单位长度,所得的函数是y=2x+3-3,即y=2x
将该函数的图象沿y轴翻折后所得的函数关系式y=2(-x),即y=-2x,
故答案为y=-2x.
本题主要考查了一次函数图象与几何变换,正确得出平移后的函数关系式是解题的关键。
22、
【解析】
由,即成比例的数的问题中,设出辅助参量表示另外两个量代入求值即可,
【详解】
解:因为,设 则
所以.
故答案为:
本题考查以成比例的数为条件求分式的值是常规题,掌握辅助参量法是解题关键.
23、直角三角形
【解析】
熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.即可得出.
【详解】
△ABC是直角三角形.
本题考查了勾股定理的逆定理,熟练掌握定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)6,12 ,0.30;(2)见解析;(3)36
【解析】
(1)根据频率分布表中的各个数据之间的关系,或者,调查总人数乘以本组的所占比可以求出a;从40人中减去其它各组人数即可,12占40 的比就是C,
(2)根据缺少的两组的数据画出直方图中对应直条,
(3)用样本估计总体,根据该年级的总人数乘以身高在160~165cm的同学所占比.
【详解】
解:(1)6 12 0.30
40×0.15=6人,a=6,
b=40-6-2-14-6=12,
12÷40=0.30,即c=0.30,
答:a=6,b=12,c=0.30,
(2)补全频率分布直方图如图所示:
(3)120×0.30=36人,
答:该年级女同学中身高在160~165cm的同学约有36人.
本题考查频率分布直方图和频率分布表所反映数据的变化趋势,理解表格中各个数据之间的关系是解决问题的关键.
25、(1)y=x+ ,y=﹣;(2)∠ACO=30°;
【解析】
(1)根据A、B两点坐标求得一次函数解析式,再求得D点的具体坐标,从而求得反比例函数的解析式.
(2)联立函数解析式求得C点坐标,过C点作CH⊥x轴于H,证明为等腰三角形,根据特殊直角三角形求得的度数,从而求得的度数.
【详解】
解:(1)设直线AB的解析式为: ,
把A(0,),B(2,0)分别代入,
得,,
解得 =,b=.
∴直线AB的解析式为:y=x+;
∵点D(1,a)在直线AB上,
∴a=+=,即D点坐标为(1,),
又∵D点(1,)在反比例函数的图象上,
∴k=1×=﹣,
∴反比例函数的解析式为:y=﹣;
(2)由,解得或,
∴C点坐标为(3,﹣),过C点作CH⊥x轴于H,如图,
∵OH=3,CH=,
∴OC=,而OA=,
∴OA=OC,
∴∠OAC=∠OCA.
又∵OB=2,
∴AB=,
在Rt△AOB中,
∴∠OAB=30°,
∴∠ACO=30°
本题考查了一次函数与反比例函数的交点问题,解题的关键是熟练掌握待定系数法.
26、-.
【解析】
将分式通分、化简,再将已知条件变形,整体代入.
【详解】
解:
= -÷
= -
=-
∵
∴1-
即1-=1-
∴-=-
∴原式=-
本题考查分式的化简,整体代入的思想.
题号
一
二
三
四
五
总分
得分
批阅人
m
1
2
3
4
v
2.01
4.9
10.03
17.1
相关试卷
这是一份2024-2025学年四川营山小桥中学数学九年级第一学期开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省南充市营山县小桥中学数学九上开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年四川省南充市营山县小桥中学数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。