天津和平区天津市第二南开中学2025届九年级数学第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数中,是的正比例函数的是( )
A.B.C.D.
2、(4分)下列式子一定成立的是( )
A.B.C.D.
3、(4分)下列运算错误的是
A.B.
C.D.
4、(4分)如图,点,在反比例函数的图象上,连结,,以,为边作,若点恰好落在反比例函数的图象上,此时的面积是( )
A.B.C.D.
5、(4分)如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是( )
A.等腰梯形B.直角梯形C.菱形D.矩形
6、(4分)解不等式,解题依据错误的是( )
解:①去分母,得5(x+2)<3(2x﹣1)
②去括号,得5x+10<6x﹣3
③移项,得5x﹣6x<﹣3﹣10
④合并同类项,得﹣x<﹣13
⑤系数化1,得x>13
A.②去括号法则B.③不等式的基本性质1
C.④合并同类项法则D.⑤不等式的基本性质2
7、(4分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为( )
A.16B.8C.D.4
8、(4分)关于的一元二次方程有两个实数根,则的取值范围是( )
A.B.C.且D.且
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知:,,代数式的值为_________.
10、(4分)若n边形的内角和是它的外角和的2倍,则n= .
11、(4分)如果最简二次根式与最简二次根式同类二次根式,则x=_______.
12、(4分)如图,直线y=-2x+2与x轴、y轴分别相交于A、B两点,四边形ABCD是正方形,曲线在第一象限经过点D,则k=_______.
13、(4分)如图,在正方形ABCD的右边作等腰三角形ADE,AD=AE,,连BE,则__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)四边形中,,,,,垂足分别为、.
(1)求证:;
(2)若与相交于点,求证:.
15、(8分)如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,
(1)若CD=1cm,求AC的长;
(2)求证:AB=AC+CD.
16、(8分)如图,正比例函数与反比例函数的图像交于A,B两点,过点A作AC⊥x轴,垂足为C,△ACO的面积为1.
(1)求反比例函数的表达式;
(2)点B的坐标为 ;
(3)当时,直接写出x的取值范围.
17、(10分)随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前的,假设从去年开始,连续三年(去年,今年,明年)该电子产品的价格下降率都相同.
(1)求这种电子产品的价格在这三年中的平均下降率.
(2)若两年前这种电子产品的价格是元,请预测明年该电子产品的价格.
18、(10分)关于的一元二次方程为
(1)求证:无论为何实数,方程总有实数根;
(2) 为何整数时,此方程的两个根都为正数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)《九章算术》是我国最重要的数学著作之一,其中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何”.译文大意是:“有一根竹子高一丈(十尺),竹梢部分折断,尖端落在地上,竹尖与竹根的距离三尺,问竹干还有多高”,若设未折断的竹干长为x尺,根据题意可列方程为_____.
20、(4分)如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x
22、(4分)在平面直角坐标系xOy中,已知A(0,1),B(1,0), C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_____________.
23、(4分)边长为2的等边三角形的面积为__________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系xOy中,O为坐标原点,已知直线经过点A(-6,0),它与y轴交于点B,点B在y轴正半轴上,且OA=2OB
(1)求直线的函数解析式
(2)若直线也经过点A(-6,0),且与y轴交于点C,如果ΔABC的面积为6,求C点的坐标
25、(10分)在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)根据已知条件画出图形;
(2)求证:四边形AFCE是平行四边形.
26、(12分)如图,从点A(0,4)出发的一束光,经x轴反射,过点C(6,4),求这束光从点A到点C所经过的路径长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据正比例函数的定义逐一判断即可.
【详解】
A. 是正比例函数,故A符合题意;
B. 不是正比例函数,故B不符合题意;
C. 不是正比例函数,故C不符合题意;
D. 不是正比例函数,故D不符合题意.
故选A.
此题考查的是正比例函数,掌握正比例函数的定义是解决此题的关键.
2、D
【解析】
根据平方根、二次根式的加法及二次根式有意义的条件即可得到答案.
【详解】
A. 因为不知道a是否为正数,所以不能得到;
B. 因为不知道a,b是否同为正数或负数,所以不能得到 ;
C. 因为,所以错误;
D.因为,所以正确.故选择D.
本题考查平方根、二次根式的加法及二次根式有意义的条件,解题的关键是掌握平方根、二次根式的加法及二次根式有意义的条件.
3、A
【解析】
根据二次根式的加减法、乘法、除法逐项进行计算即可得.
【详解】
A. 与不是同类二次根式,不能合并,故错误,符合题意;
B. ,正确,不符合题意;
C. = ,正确,不符合题意;
D. ,正确,不符合题意.
故选A.
本题考查了二次根式的运算,熟练掌握二次根式的乘除法、加减法的运算法则是解题的关键.
4、A
【解析】
连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,),点C(m,)(a<0,m>0),由平行四边形的性质和中点坐标公式可得点B[(a+m),(+)],把点B坐标代入解析式可求a=-2m,由面积和差关系可求解.
【详解】
解:如图,连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,
设点A(a,),点C(m,)(a<0,m>0),
∵四边形ABCO是平行四边形,
∴AC与BO互相平分,
∴点E(),
∵点O坐标(0,0),
∴点B[(a+m),(+)].
∵点B在反比例函数y=(x<0)的图象上,
∴,
∴a=-2m,a=m(不合题意舍去),
∴点A(-2m,),
∴四边形ACFG是矩形,
∴S△AOC=(+)(m+2m)--1=,
∴▱OABC的面积=2×S△AOC=3.
故选:A.
本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,中点坐标公式,解决问题的关键是数形结合思想的运用.
5、D
【解析】
首先作出图形,根据三角形的中位线定理,可以得到,,,再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.
【详解】
解:连接AC,BD.
∵E,F是AB,AD的中点,即EF是的中位线.
,
同理:,,.
又等腰梯形ABCD中,.
.
四边形EFGH是菱形.
是的中位线,
∴EF EG,,
同理,NMEG,
∴EFNM,
四边形OPMN是平行四边形.
,,
又菱形EFGH中,,
平行四边形OPMN是矩形.
故选:D.
本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH和四边形OPMN的边的关系.
6、D
【解析】
根据题目中的解答步骤可以写出各步的依据,从而可以解答本题.
【详解】
解:由题目中的解答步骤可知,
②去括号法则,故选项A正确,
③不等式的基本性质1,故选项B正确,
④合并同类项法则,故选项C正确,
⑤不等式的基本性质3,故选项D错误,
故选D.
本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法.
7、A
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.
【详解】
解:∵E、F分别是AB、AC的中点,
∴EF是△ABC的中位线,
∴BC=2EF=2×2=4,
∴菱形ABCD的周长=4BC=4×4=1.
故选A.
本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
8、D
【解析】
分析:根据一元二次方程根的判别式
进行计算即可.
详解:根据一元二次方程一元二次方程有两个实数根,
解得:,
根据二次项系数 可得:
故选D.
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4
【解析】
根据完全平方公式计算即可求出答案.
【详解】
解:∵,,
∴x−y=2,
∴原式=(x−y)2=4,
故答案为:4
本题考查二次根式的化简求值和完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.
10、6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2), 外角和=360º
所以,由题意可得180(n-2)=2×360º
解得:n=6
11、1
【解析】
∵最简二次根式与最简二次根式是同类二次根式,
∴x+3=1+1x,解得:x=1.当x=1时,6和是最简二次根式且是同类二次根式.
12、1.
【解析】
试题分析:作DE⊥x轴,垂足为E,连OD.可以证出△BOA≌△AED,得到AE=BO,AO=DE,所以S△DOE=•OE•DE=×1×1=,∴k=×2=1.
故答案为1.
考点:反比例函数综合题.
13、45°
【解析】
先证明AB=AE,求得∠AEB,由AD=AE,∠DAE=50°,求得∠AED,进而由角的和差关系求得结果.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵AD=AE,∠DAE=50°,
∴AB=AE,∠ADE=∠AED=65°,∠BAE=140°,
∴∠ABE=∠AEB=20°,
∴∠BED=65°−20°=45°,
故答案为:45°.
本题主要考查了正方形的性质,等腰三角形的性质,三角形内角和定理,关键是求得∠AEB和∠AED的度数.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;
(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.
【详解】
证明:(1)∵BE=DF,
∴BE-EF=DF-EF,
即BF=DE,
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,
在Rt△ADE与Rt△CBF中,
,
∴Rt△ADE≌Rt△CBF;
(2)如图,连接AC交BD于O,
∵Rt△ADE≌Rt△CBF,
∴∠ADE=∠CBF,
∴AD∥BC,又AD=BC,
∴四边形ABCD是平行四边形,
∴AO=CO.
本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.
15、(1);(2)证明见解析.
【解析】
(1)根据角平分线上的点到两边的距离相等可得DE=CD=1cm,再判断出△BDE为等腰直角三角形,然后求出BD,再根据AC=BC=CD+BD求解即可;
(2)利用“HL”证明△ACD与△AED全等,根据全等三角形对应边相等可得AC=AE,再根据AB=AE+BE整理即可得证.
【详解】
(1)解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,
∴DE=CD=1cm,
又∵AC=BC ,∠C=90°,
∴∠B=∠BAC =45°,
∴△BDE为等腰直角三角形.
∴BD=DE=cm ,
∴AC=BC=CD+BD= (1+)cm.
(2)证明:在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
∵△BDE为等腰直角三角形,
∴BE=DE=CD,
∵AB=AE+BE,
∴AB=AC+CD.
本题考查了角平分线的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质.熟记各性质是解题的关键.
16、解: ;
(2)B(-2,-1);
(3)-2
【解析】
(1)根据反比例函数图象的性质,反比例函数上任意一点向x轴(或y轴)作垂线,这一点、所交点与原点之间所围成的直角三角形的面积等于 ,图象经过一、三象限k>0;
(2)联立正比例函数与反比例函数,解出的x,y分别为交点的横、纵坐标,这里需注意解得的解集有两个,说明交点有两个,需要考虑点所在位于哪一个象限;
(3)观察图像可以解决问题,谁的图像在上面,谁对应的函数值大,这里需过两个交点作x轴垂线,两条垂线与y轴将图象分成四部分,分别讨论.
【详解】
解:(1)∵△ACO的面积为1,C⊥x轴
∴,
即,
∵点A是函数的点
∴,
∵反比例函数的图像在第一、三象限,
∴k>0
∴k=8,反比例函数表达式为 ;
(2)联立 ,可解得 或,
∵B点在第三象限,
∴点B坐标为(-2,-1).
(3)根据(2)易得A点坐标为(2,1),
所以当-2
(1)考查反比例函数图象的性质问题,图中△ACO的面积正好是,图象在第一、三象限,所以k>0;
(2)考查函数交点问题,两个函数的交点的横、纵坐标分别是联立它们,所形成的方程组的解集对应的x、y值;
(3)可借助图象比较两个函数的大小,这里一定要注意分不同区间去考虑.
17、(1);(2)元
【解析】
(1)设这种电子产品价格的平均下降率为,根据今年年底的价格是两年前的列方程求解即可;
(2)根据明年的价格=今年的价格×(1-平均下降率)即可.
【详解】
(1)设这种电子产品价格的平均下降率为,
由题意得
解得,(不合题意,舍去)
即这种电子产品价格的平均下降率为.
(2)(元)
预测明年该电子产品的价格为元
此题考查了由实际问题抽象出一元二次方程,注意第二次降价后的价格是在第一次降价后的价格的基础上进行降价的.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
18、(1)为任何实数方程总有实数根;(2).
【解析】
(1)表示出根的判别式,得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;
(2)根据根与系数的关系列出方程,结合题目条件求解即可.
【详解】
(1)
∴为任何实数方程总有实数根。
(2)设方程两根为,,则
由题可得,
∴或
∴
∵是整数,∴
此题考查了根的判别式,以及根与系数的关系,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x1+31=(10﹣x)1
【解析】
根据勾股定理即可得出结论.
【详解】
设未折断的竹干长为x尺,
根据题意可列方程为:x1+31=(10−x)1.
故答案为:x1+31=(10−x)1.
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
20、
【解析】
由题意结合图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式的解集.
【详解】
解:两个条直线的交点坐标为A(1,3),
当x<1时,
直线y=ax+4在直线y=3x的上方,
当x>1时,
直线y=ax+4在直线y=3x的下方,
故不等式3x
本题主要考查正比例函数、一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
21、1
【解析】
利用完全平方公式变形,原式=,把代入计算即可.
【详解】
解:
把代入得:
原式=.
故答案为:1.
本题考查的是求代数式的值,把原式利用完全平方公式变形是解题的关键.
22、(-2,0)或(4,0)或(2,2)
【解析】
分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.
【详解】
解:分三种情况:①AB为对角线时,点D的坐标为(-2,0);
②BC为对角线时,点D的坐标为(4,0);
③AC为对角线时,点D的坐标为(2,2).
综上所述,点D的坐标可能是(-2,0)或(4,0)或(2,2).
故答案为(-2,0)或(4,0)或(2,2).
本题考查平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解题的关键.
23、
【解析】
根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.
【详解】
∵等边三角形高线即中点,AB=2,
∴BD=CD=1,
在Rt△ABD中,AB=2,BD=1,
∴
∴
故答案为:
考查等边三角形的性质以及面积,勾股定理等,熟练掌握三线合一的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)(2)C(0,5)或(0,1)
【解析】
(1)由OA=2OB可求得OB长,继而可得点B坐标,然后利用待定系数法进行求解即可;
(2)根据三角形面积公式可以求得BC的长,继而可得点C坐标.
【详解】
(1)A(-6,0),
OA=6 ,
OA=2OB,
OB=3 ,
B在y轴正半轴,
B(0,3),
设直线解析式为:y=kx+3(k ≠0),
将A(-6,0)代入得:6k+3=0,
解得:,
;
(2) ,
AO=6,
BC=2 ,
又∵B(0,3),3+2=5,3-2=1,
C(0,5)或(0,1).
本题考查了待定系数法求一次函数解析式,三角形的面积等,熟练掌握相关知识是解题的关键.
25、(1)见解析;(2)见解析
【解析】
(1)根据已知条件画出图形即可;
(2)因为AF∥EC,得出∠DFA=∠DEC,∠DAF=∠DCE,因为D是AC的中点,可得DA=DC,推出△DAF≌△DCE,得到AF=CE,因为AF∥EC,即四边形AFCE是平行四边形;
【详解】
解:
(1)根据已知条件画出图形如下:
(2)证明:∵AF∥EC,
∴∠DFA=∠DEC,∠DAF=∠DCE,
∵D是AC的中点,
∴DA=DC,
∴△DAF≌△DCE,
∴AF=CE;
又∵AF∥EC,
∴四边形AFCE是平行四边形;
本题主要考查了平行四边形的判定与性质,掌握平行四边形的判定是解题的关键.
26、10.
【解析】
首先过点B作BD⊥x轴于D,由A(0,4),C(6,4),即可得OA = CD = 4,OD = 6,由题意易证得△AOB≌△CDB,根据全等三角形即可得OB = BD = 3,AB = CB,又由勾股定理即可求得这束光从点A到点C所经过的路径的长.
【详解】
解:如图,过点C作CD⊥x轴于点D,
∵A(0,4),C(6,4),
∴OA = CD = 4,OD = 6,
由题意得,∠ABO =∠CBD,
∵∠AOB =∠CDB =90°,
∴△AOB≌△CDB,
∴OB = BD = 3,AB = CB,
在Rt△AOB中,,
∴这束光从点A到点C所经过的路径长度为AB+BC=10.
此题考查勾股定理,点的坐标,解题关键在于作辅助线.
题号
一
二
三
四
五
总分
得分
天津市和平区第二十中学2025届数学九年级第一学期开学达标测试试题【含答案】: 这是一份天津市和平区第二十中学2025届数学九年级第一学期开学达标测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
天津和平区天津市双菱中学2024年九年级数学第一学期开学经典模拟试题【含答案】: 这是一份天津和平区天津市双菱中学2024年九年级数学第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年天津市南开区复兴中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年天津市南开区复兴中学数学九上开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。