天津和平区天津市双菱中学2024年九年级数学第一学期开学经典模拟试题【含答案】
展开
这是一份天津和平区天津市双菱中学2024年九年级数学第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是( )
A.B.
C.D.
2、(4分)如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB,AD的垂线段PE,PF,则PE+PF等于( )
A.6B.3C.1.5D.0.75
3、(4分)在1000个数据中,用适当的方法抽取50个作为样本进行统计,频数分布表中54.5~57.5这一组的频数是6,那么它的频率为( )
A.0.12B.0.60C.6D.12
4、(4分)如图,、分别是、的中点,过点作∥交的延长线于点,则下列结论正确的是 ( )
A.B.
C. <D.>
5、(4分)如果,那么等于
A.3:2B.2:5C.5:3D.3:5
6、(4分)如图,中,,,点在反比例函数的图象上,交反比例函数的图象于点,且,则的值为( )
A.B.C.D.
7、(4分)分式可变形为( )
A.B.C.D.
8、(4分)已知直线y=kx-4(k<0)与两坐标轴所围成的三角形面积等于4,则该直线的表达式为( )
A.y= -x-4B.y= -2x-4C.y= -3x+4D.y= -3x-4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知直线y=kx+3经过点A(2,5)和B(m,-2),则m= ___________.
10、(4分)在中,,,点分别是边的中点,则的周长是__________.
11、(4分)如图所示,点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列四个结论:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP;④PD=EC,其中正确结论的序号是_______.
12、(4分)已知点A(a,5)与点B(-3,b)关于y轴对称,则a-b= .
13、(4分)二次三项式是一个完全平方式,则k=_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校为了开展“书香墨香进校园”活动,购买了一批毛笔和墨水.已知毛笔的单位比墨水的单价多5元,购买毛笔用了450元,墨水用了150元,毛笔数量是墨水数量的2倍.求这批毛笔和墨水的数量分别是多少?
15、(8分)如图,在平面直角坐标系中,已知点A(-3,0),B(0,-1),C(0,)三点.
(1)求直线AB的解析式.
(2)若点D在直线AB上,且DB=DC,尺规作图作出点D(保留作图痕迹),并求出点D的坐标.
16、(8分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,
(1)求证:BE=CF ;
(2)当四边形ACDE为菱形时,求BD的长.
17、(10分)(1)如图,若图中小正方形的边长为1,则△ABC的面积为______.
(2)反思(1)的解题过程,解决下面问题:若,,(其中a,b均为正数)是一个三角形的三条边长,求此三角形的面积.
18、(10分)某校要从王同学和李同学中挑选一人参加县知识竞赛在五次选拔测试中他俩的成绩如下表.
根据上表解答下列问题:
(1)完成下表:
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是_________.
20、(4分)计算:的结果是________.
21、(4分)八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.
22、(4分)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.
23、(4分)计算:=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某文具店从市场得知如下信息:
该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.
(1)求y与x之间的函数关系式;
(2)若全部销售完后,获得的利润为1200元,则购进A、B两种品牌计算器的数量各是多少台?
(3)若购进计算器的资金不超过4100元,求该文具店可获得的最大利润是多少元?
25、(10分)如图,四边形 ABCD 和四边形 AEFB 都是平行四边形, 求证:△ADE≌△BCF.
26、(12分)已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.
(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是 .
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.
【详解】
解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;
②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;
故选:C.
本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.
2、B
【解析】
菱形ABCD的周长为16,4, 菱形面积为12,BC边上的高为3,
∠ABD=∠CBD,P到BC距离等于h=PE,PE+PF=h+PF=3.所以选B.
点睛:菱形的面积公式有两个:
( 1)知道底和高,按照平行四边形的面积公式计算:S=ah.
(2)知道两条对角线的长a和b,面积S=.
3、A
【解析】
根据频率=频数÷样本总数解答即可.
【详解】
用样本估计总体:在频数分布表中,54.5~57.5这一组的频数是6,
那么估计总体数据落在54.5~57.5这一组的频率=0.12,
故选A.
本题主要考查频率分布表、频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量.同时考查统计的基本思想即用样本估计总体的应用.
4、B
【解析】
首先根据E是AC的中点得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.
【详解】
∵E为AC中点,
∴AE=EC,
∵CF∥BD,
∴∠ADE=∠F,
在△ADE和△CFE中,
∵,
∴△ADE≌△CFE(AAS),
∴DE=FE.
故选B.
本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.
5、B
【解析】
根据比例的基本性质(两内项之积等于两外项之积)和合比定理【如果a:b=c:d,那么(a+b):b=(c+d):d (b、d≠0)】解答并作出选择.
【详解】
∵=的两个内项是b、2,两外项是a、3,
∴,
∴根据合比定理,得
,即;
同理,得
=2:5.
故选B.
本题考查比例的性质,熟练掌握比例的基本性质是解题关键.
6、D
【解析】
过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴,利用AA定理和平行证得△COE∽△OBF∽△AOD,然后根据相似三角形的性质求得,,根据反比例函数比例系数的几何意义求得,从而求得,从而求得k的值.
【详解】
解:过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴
∴CE∥AD,∠CEO=∠BFO=90°
∵
∴∠COE+∠FOB=90°,∠ECO+∠COE=90°
∴∠ECO=∠FOB
∴△COE∽△OBF∽△AOD
又∵,
∴,
∴,
∴
∵点在反比例函数的图象上
∴
∴
∴,解得k=±8
又∵反比例函数位于第二象限,
∴k=-8
故选:D.
本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.
7、B
【解析】
根据分式的基本性质进行变形即可.
【详解】
=.
故选B.
此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.
8、B
【解析】
先求出直线y=kx-1(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于1,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.
【详解】
解:直线y=kx-1(k<0)与两坐标轴的交点坐标为(0,-1)(,0),
∵直线y=kx-1(k<0)与两坐标轴所围成的三角形面积等于1,
∴×(-)×1=1,解得k=-2,
则直线的解析式为y=-2x-1.
故选:B.
本题考查用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
由题意将点A(2,1)和B(m,-2),代入y=kx+3,即可求解得到m的值.
【详解】
解:∵直线y=kx+3经过点A(2,1)和B(m,-2),
∴,解得,
∴.
故答案为:-1.
本题考查一次函数图象性质,注意掌握点过一次函数图象即有点坐标满足一次函数解析式.
10、
【解析】
首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.
【详解】
解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,
∴AB===5,
∵点D、E、F分别是边AB、AC、BC的中点,
∴DE=BC,DF=AC,EF=AB,
∴C△DEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.
故答案为:6.
本题考查了勾股定理和三角形中位线定理.
11、①③④.
【解析】
连接PC,根据正方形的对角线平分一组对角可得∠ABP=∠CBP=45°,然后利用“边角边”证明△ABP和△CBP全等,根据全等三角形对应边相等可得AP=PC,对应角相等可得∠BAP=∠BCP,再根据矩形的对角线相等可得EF=PC,对边相等可得PF=EC,再判断出△PDF是等腰直角三角形,然后根据等腰直角三角形的斜边等于直角边的倍解答即可.
【详解】
解:如图,连接PC,在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,
∵在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴AP=PC,∠BAP=∠BCP,
又∵PE⊥BC,PF⊥CD,
∴四边形PECF是矩形,
∴PC=EF,∠BCP=∠PFE,
∴AP=EF,∠PFE=∠BAP,故①③正确;
∵PF⊥CD,∠BDC=45°,
∴△PDF是等腰直角三角形,
∴PD=PF,
又∵矩形的对边PF=EC,
∴PD=EC,故④正确;
只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故②错误;
综上所述,正确的结论有①③④.
故答案为:①③④.
本题考查正方形的性质,矩形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,综合性较强,但难度不大,连接PC构造出全等三角形是解题的关键.
12、-1
【解析】
试题分析:因为关于y轴对称的两个点的横坐标互为相反数,纵坐标不变,又点A(a,5)与点B(-3,b)关于y轴对称,所以a=3,b=5,所以a-b=3-5=-1.
考点:关于y轴对称的点的坐标特点.
13、±6
【解析】
根据完全平方公式的展开式,即可得到答案.
【详解】
解:∵是一个完全平方式,
∴;
故答案为:.
本题考查了完全平方公式,解题的关键是掌握完全平方公式的展开式.
三、解答题(本大题共5个小题,共48分)
14、墨水的单价是10元,则毛笔的单价是15元.
【解析】
设墨水的单价是x元,则毛笔的单价是(x+5)元,根据用450元购进的毛笔的数量是用150元购进的墨水的数量的2倍建立方程求出其解即可.
【详解】
设墨水的单价是x元,则毛笔的单价是(x+5)元,由题意,得
,
解得:x=10,
经检验,x=10是原方程的根
∴x+5=15元,
答:墨水的单价是10元,则毛笔的单价是15元.
本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.
15、(1)y=x-1;(2)画图见解析,点D的坐标为(,).
【解析】
(1)设直线AB解析式为:y=kx+b,把A,B坐标代入,求解即可;
(2)按照题目要求画图即可,根据题意可得点D在线段BC垂直平分线上,据此可求出D点坐标.
【详解】
(1)设直线AB解析式为:y=kx+b,
代入点A(-3,0),B(0,-1),
得:,
解得,
∴直线AB解析式为:y=x-1;
(2)如图所示:
∵B(0,-1),C(0,),DB=DC,
∴点D在线段BC垂直平分线上,
∴D的纵坐标为,
又∵点D在直线AB上,
令y=,得x=,
∴点D的坐标为(,).
本题考查了用待定系数法求一次函数解析式,尺规作图,垂直平分线的性质,掌握知识点是解题关键.
16、(1)证明见解析(2)-1
【解析】
(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;
(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.
【详解】
(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
∴AE=AB,AF=AC,∠EAF=∠BAC,
∴∠EAF+∠BAF=∠BAC+∠BAF,
即∠EAB=∠FAC,
在△ACF和△ABE中,
△ACF≌△ABE
BE=CF.
(2)∵四边形ACDE为菱形,AB=AC=1,
∴DE=AE=AC=AB=1,AC∥DE,
∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
∴∠AEB=∠ABE=45°,
∴△ABE为等腰直角三角形,
∴BE=AC=,
∴BD=BE﹣DE=.
考点:1.旋转的性质;2.勾股定理;3.菱形的性质.
17、(1)3.5;(2)的面积为:.
【解析】
(1)根据图形可知:△ABC的面积等于以3为边长的正方形面积与三个直角三角洲面积之差,代入数据即可得出结论;
(2)构造以5a为长、2b为宽的矩形,利用(1)的面积的求法,代入数据即可得出结论.
【详解】
解:(1)S△ABC=3×3-×1×2×2×3×1×3=3.5,
故答案为:3.5;
(2)构造如图的矩形:
设每个单位矩形的长为,宽为,则:
,,,
则的面积等于大矩形面积与三个直角三角形面积的差,
故的面积为:.
本题考查勾股定理的应用以及三角形的面积,解题的关键是:(1)利用分割图形法求三角形面积;(2)构建矩形.本题属于基础题,难度不大,解决该题型题目时,通过构建矩形,利用分割图形法求不规则的图形的面积是关键.
18、(1)见解析(2)小李(3)李同学
【解析】
(1)根据平均数、中位数、众数、方差、极差的概念求得相关的数;
(2)方差反映数据的离散程度,所以方差越小越稳定,因此小李的成绩稳定;用优秀的次数除以测验的总次数即可求出优秀率;
(3)选谁参加比赛的答案不唯一,小李的成绩稳定,所以获奖的几率大;小王的95分以上的成绩好,则小王获一等奖的机会大.
【详解】
(1)
(2)在这五次考试中,成绩比较稳定的是小李,
小王的优秀率=×100%=40%,小李的优秀率=×100%=80%;
(3)我选李同学去参加比赛,因为李同学的优秀率高,有4次得80分以上,成绩比较稳定,获奖机会大.
本题考查了方差、中位数及众数的知识,属于基础题,一些同学对方差的公式记不准确或粗心而出现错误.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、35°
【解析】
根据折叠的性质可得∠ECB=∠ECF,CB=CF,根据菱形的性质可得CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,求出等腰三角形DCF的顶角∠DCF,即可求出∠ECF的度数
【详解】
解:在菱形ABCD中,CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,
根据折叠可得:∠ECB=∠ECF,CB=CF,
∴CF=CD
∴∠DCF=180°-70°-70°=40°,
∴∠ECF=(∠BCD-∠DCF)=35°.
故答案为35°.
本题考查图形的翻折变换,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
20、4
【解析】
按照二次根式的乘、除运算法则运算即可求解.
【详解】
解:原式=
故答案为:4.
本题考查二次根式的乘除运算法则,熟练掌握运算公式是解决此类题的关键.
21、70%
【解析】
利用合格的人数即50-10-5=35人,除以总人数即可求得.
【详解】
解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=70%.
故答案是:70%.
本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
22、2
【解析】
根据中位数和众数的定义分析可得答案.
【详解】
解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.
所以这5个数据分别是x,y,2,1,1,且x<y<2,
当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,
所以这组数据可能的最大的和是0+1+2+1+1=2.
故答案为:2.
主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
23、
【解析】
分析:应用完全平方公式,求出算式的值是多少即可.
详解:=8﹣4+1=9﹣4.
故答案为9﹣4.
点睛:本题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.
二、解答题(本大题共3个小题,共30分)
24、(1)y与x之间的函数关系式为y=2000﹣20x;(2)购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)该文具店可获得的最大利润是1400元.
【解析】
(1)该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,根据利润=单个利润×销售量,分别求出A、B的利润,二者之和便是总利润,即可得到答案,
(2)把y=1200代入y与x之间的函数关系式即可,
(3)根据购进计算器的资金不超过4100元,列出关于x的不等式,求出x的取值范围后,根据一次函数的增减性求得最大利润.
【详解】
解(1)设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,
A品牌计算器的单个利润为90﹣70=20元,
A品牌计算器销售完后利润=20x,
B品牌计算器的单个利润为140﹣100=40元,
B品牌计算器销售完后利润=40(50﹣x),
总利润y=20x+40(50﹣x),
整理后得:y=2000﹣20x,
答:y与x之间的函数关系式为y=2000﹣20x;
(2)把y=1200代入y=2000﹣20x得:2000﹣20x=1200,
解得:x=40,
则A种品牌计算器的数量为40台,
B种品牌计算器的数量为50﹣40=10台,
答:购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;
(3)根据题意得:70x+100(50﹣x)≤4100,
解得:x≥30,
一次函数y=2000﹣20x随x的增大而减小,
x为最小值时y取到最大值,
把x=30代入y=2000﹣20x得:y=2000﹣20×30=1400,
答:该文具店可获得的最大利润是1400元.
本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.
25、见解析.
【解析】
由四边形 ABCD 和四边形 AEFB,证明四边形DEFC为平行四边形,根据平行四边形的性质可以得到△ADE和△BCF的三边相等,从而证明它们全等.
【详解】
解:证明:∵四边形 ABCD为平行四边形,
∴,
∵四边形AEFB是平行四边形,
∴,
∴,
∴四边形DEFC为平行四边形,
∴DE=FC,
在△ADE和△BCF中
∵
∴△ADE≌△BCF(SSS)
本题考查全等三角形的判定,平行四边形的判定和性质.在解决本题中易证明三角形的两组对应边AD=BC,AE=BF,所以解题关键是证明四边形DEFC为平行四边形,并因此证明DE=FC.
26、(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣.
【解析】
(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE=AF,即可得出结论;
(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;
(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF=60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=FH,CF=2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,得出EH=4+x=2x+3x,解得:x=﹣1,求出FH=x=3﹣即可.
【详解】
(1)解:△AEF是等边三角形,理由如下:
连接AC,如图1所示:
∵四边形ABCD是菱形,
∴AB=BC=AD,∠B=∠D,
∵∠ABC=60°,
∴∠BAD=120°,△ABC是等边三角形,
∴AC=AB,
∵点E是线段CB的中点,
∴AE⊥BC,
∴∠BAE=30°,
∵∠EAF=60°,
∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,
在△BAE和△DAF中,
,
∴△BAE≌△DAF(ASA),
∴AE=AF,
又∵∠EAF=60°,
∴△AEF是等边三角形;
故答案为:等边三角形;
(2)证明:连接AC,如图2所示:
同(1)得:△ABC是等边三角形,
∴∠BAC=∠ACB=60°,AB=AC,
∵∠EAF=60°,
∴∠BAE=∠CAF,
∵∠BCD=∠BAD=120°,
∴∠ACF=60°=∠B,
在△BAE和△CAF中,
,
∴△BAE≌△CAF(ASA),
∴BE=CF;
(3)解:同(1)得:△ABC和△ACD是等边三角形,
∴AB=AC,∠BAC=∠ACB=∠ACD=60°,
∴∠ACF=120°,
∵∠ABC=60°,
∴∠ABE=120°=∠ACF,
∵∠EAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF(ASA),
∴BE=CF,AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,
∴∠AEB=45°,
∴∠CEF=∠AEF﹣∠AEB=15°,
作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:
则GE=GF,∠FGH=30°,
∴FG=2FH,GH=FH,
∵∠FCH=∠ACF﹣∠ACB=60°,
∴∠CFH=30°,
∴CF=2CH,FH=CH,
设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,
∵BC=AB=4,
∴CE=BC+BE=4+2x,
∴EH=4+x=2x+3x,
解得:x=﹣1,
∴FH=x=3﹣,
即点F到BC的距离为3﹣.
本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.
题号
一
二
三
四
五
总分
得分
第1次
第2次
第3次
第4次
第5次
王同学
60
75
100
90
75
李同学
70
90
100
80
80
姓名
平均成绩(分)
中位数(分)
众数(分)
方差
王同学
80
75
75
_____
李同学
A品牌计算器
B品牌计算器
进价(元/台)
70
100
售价(元/台)
90
140
姓名
平均成绩(分)
中位数(分)
众数(分)
方差
王同学
80
75
75
190
李同学
84
80
80
104
相关试卷
这是一份2025届天津和平区天津市双菱中学数学九年级第一学期开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年天津市和平区双菱中学数学九上开学联考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年天津市和平区双菱中学数学九年级第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。