天津市河东区名校2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)两个一次函数与,它们在同一直角坐标系中的图象可能是( )
A.B.
C.D.
2、(4分)下列各组数中,属于勾股数的是( )
A.1,,2B.1.5,2,2.5C.6,8,10D.5,6,7
3、(4分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=( )度.
A.270°B.300°
C.360°D.400°
4、(4分)下列式子中,y不是x的函数的是( )
A.B.C.D.
5、(4分)将直线y=﹣4x向下平移2个单位长度,得到的直线的函数表达式为( )
A.y=﹣4x﹣2B.y=﹣4x+2C.y=﹣4x﹣8D.y=﹣4x+8
6、(4分)将方程化成一元二次方程的一般形式,正确的是( ).
A.B.C.D.
7、(4分)下列根式中是最简根式的是( )
A. B. C. D.
8、(4分)如图,在中,于点D,且是的中点,若则的长等于( )
A.5B.6C.7D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲,乙,丙三位同学近次快速阅读模拟比赛成绩平均分均为分,且甲,乙,丙的方差是,则发挥最稳定的同学是__________.
10、(4分)如图,在正方形中,点是对角线上一点,连接,将绕点逆时针方向旋转到,连接,交于点,若,,则线段的长为___________.
11、(4分)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为_______________.
12、(4分)一组数2、a、4、6、8的平均数是5,这组数的中位数是______.
13、(4分)如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则可添加的条件为_______________________________.(填一个即可)
三、解答题(本大题共5个小题,共48分)
14、(12分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。
(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_____________;
(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负。你认为这个游戏是否公平?请说明理由。
15、(8分)小黄人在与同伴们研究日历时发现了一个有趣的规律:
若用字母n表示平行四边形中左上角位置的数字,请你用含n的式子写出小黄人发现的规律,并加以证明.
16、(8分)化简或解方程
(1) ;
(2)
17、(10分)如图,直线与x轴、y轴分别交于点A和点B,点C在线段AB上,点D在y轴的负半轴上,C、D两点到x轴的距离均为1.
(1)点C的坐标为 ,点D的坐标为 ;
(1)点P为线段OA上的一动点,当PC+PD最小时,求点P的坐标.
18、(10分)(1)已知,,求的值.
(2)若,求的平方根.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在中,对角线,相交于点,若,,,则的周长为_________.
20、(4分)已知,化简二次根式的正确结果是_______________.
21、(4分)如图,点C为线段AB上一点,且CB=1,分别以AC、BC为边,在AB的同一侧作等边△ACD和等边△CBE,连接DE,AE,∠CDE=30°,则△ADE的面积为_____.
22、(4分)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.
23、(4分)某种数据方差的计算公式是,则该组数据的总和为_________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,直线l是一次函数的图象求:
这个函数的解析式;
当时,y的值.
25、(10分)某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,
(1)求v关于t的函数表达式,并写出自变量t的取值范围;
(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.
26、(12分)计算:
(1)
(2) -
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.
【详解】
A、若a>0,b<0,符合,不符合,故不符合题意;
B、若a>0,b>0,符合,不符合,故不符合题意;
C、若a>0,b<0,符合,符合,故符合题意;
D、若a<0,b>0,符合,不符合,故不符合题意;
故选:C.
此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.
2、C
【解析】
根据勾股数的定义:满足a2+b2=c2 的三个正整数,称为勾股数,据此判断即可.
【详解】
A.1,,2,因为不是正整数,故一定不是勾股数,故此选项错误;
B.1.5,2,2.5,因为不是正整数,故一定不是勾股数,故此选项错误;
C.因为62+82=102,故是勾股数.故此选项正确;
D.因为52+62≠72,故不是勾股数,故此选项错误.
故选C.
本题考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合较小两边的平方和=最大边的平方.
3、C
【解析】
根据多边形的外角和等于360°解答即可.
【详解】
由多边形的外角和等于360°可知,
∠1+∠2+∠3+∠4+∠5=360°,
故答案为:360°.
本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.
4、B
【解析】
根据函数的定义即可解答.
【详解】
对于x的每一个取值,y都有唯一确定的值,y是x的函数,
∵选项A、C、D ,当x取值时,y有唯一的值对应;选项B,当x=2时,y=±1,y由两个值,
∴选项B中,y不是x的函数.
故选B.
本题考查了函数的定义,熟练运用函数的定义是解决问题的关键,
5、A
【解析】
上下平移时k值不变,b值是上加下减,依此求解即可.
【详解】
解:将直线y=﹣4x向下平移2个单位长度,得到直线y=﹣4x﹣2;
故选:A.
此题考查了一次函数图象与几何变换.要注意求直线平移后的解析式时k的值不变,只有b发生变化.
6、B
【解析】
通过移项把方程4x2+5x=81化成一元二次方程的一般形式.
【详解】
方程4x2+5x=81化成一元二次方程的一般形式是4x2+5x-81=1.
故选B.
此题主要考查了一元二次方程的一般形式,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=1(a≠1).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.
7、B
【解析】
试题解析:A选项中,被开方数中含b2,所以它不是最简二次根式,故本选项错误;
B选项中,的被开方数不能因式分解,不含开方开的尽的因式,是最简二次根式,故本选项正确;
C选项中,被开方数含分母,所以它不是最简二次根式,故本选项错误;
D选项中,被开方数含能开得尽方的因数,所以它不是最简二次根式,故本选项错误.
故选B.
8、D
【解析】
由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.
【详解】
∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
∴DE= AC=5,
∴AC=10.
在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得
CD= =8.
故选D
此题考查勾股定理,直角三角形斜边上的中线,解题关键在于利用勾股定理求值
二、填空题(本大题共5个小题,每小题4分,共20分)
9、丙
【解析】
方差反应了一组数据的波动情况,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定,据此进一步判断即可.
【详解】
∵,,,
∴丙同学的方差最小,
∴发挥最稳定的同学是丙,
故答案为:丙.
本题主要考查了方差的意义,熟练掌握相关概念是解题关键.
10、
【解析】
连接EF,过点E作EM⊥AD,垂足为M,设ME=HE=FH=x,则GH=3-x,从而可得到,于是可求得x的值,最后在Rt△AME中,依据勾股定理可求得AE的长.
【详解】
解:如图所示:连接EF,过点E作EM⊥AD,垂足为M.
∵ABCD为正方形,EM⊥AD,∠EDF=90°,AD=BC=CD=DG+CG=5,
∴△MED和△DEF均为等腰直角三角形.
∵DE=DF,∠EDH=∠FDH=45°,
∴DH⊥EF,EH=HF,
∴FH∥BC.
设ME=HE=FH=x,则GH=3﹣x.
由FH∥BC可知:,
即,解得:,
∴.
在Rt△AME中,.
故答案为:.
本题主要考查的是正方形的性质、等腰直角三角形的性质和判定、平行线分线段成比例定理、勾股定理的应用,求得ME的长是解题的关键.
11、
【解析】
设AC与BD交于点E,则∠ABE=60°,根据菱形的周长求出AB的长度,在RT△ABE中,求出AE,继而可得出AC的长.
【详解】
解:在菱形ABCD中,∠ABC=120°,
∴∠ABE=60°,AC⊥BD,
∵菱形ABCD的周长为16,
∴AB=4,
在RT△ABE中,AE=ABsin∠ABE=,
故可得AC=2AE=.
故答案为.
此题考查了菱形的性质,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
12、5
【解析】
由平均数可求解a的值,再根据中位数的定义即可求解.
【详解】
解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,
故答案为:5.
本题考查了平均数和中位数的概念.
13、AD∥BC(答案不唯一)
【解析】
根据两组对边分别平行的四边形是平行四边形可得添加的条件为.
【详解】
解:四边形ABCD中,,要使四边形ABCD为平行四边形,则可添加的条件为,
故答案为.
此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.
三、解答题(本大题共5个小题,共48分)
14、(1)(2)不公平.获胜,否则.
【解析】游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,即转化为在总情况明确的情况下,判断双方取胜的情况数目是否相等.
15、,证明见解析
【解析】
设左上角的数字为x,则右上角的数字为x+1;左下角的数字为x+6;右下角的数字为x+7,根据题意将四个数交叉相乘进行整式乘法的运算并化简即可.
【详解】
解:规律为
证明:∵
=
=6
∴
本题考查整式的乘法运算,根据题意找到数字间的等量关系及多项式的乘法法则,正确计算是本题的解题关键.
16、(1)21;(2)x1=,x2=−1.
【解析】
(1)首先化为最简二次根式,然后根据二次根式的乘法法则进行计算;
(2)利用因式分解法解方程即可.
【详解】
解:(1)原式;
(2),
,
∴或,
解得:x1=,x2=−1.
此题考查了解一元二次方程和二次根式的乘法运算,熟练掌握运算法则是解本题的关键.
17、(1)(-3,1);(0,-1)
(1)P(,0)
【解析】
(1)根据直线与C、D两点到x轴的距离均为1即可求出C,D的坐标;(1)连接CD,求出直线CD与x轴的交点即为P点.
【详解】
(1)令y=1,解得x=-3,∴点C的坐标为(-3,1)
令y=-1,解得x=0,∴点D的坐标为(0,-1)
(1)如图,连接CD,求出直线CD与x轴的交点即为P点.
设直线CD的解析式为y=kx+b,
把(-3,1),(0,1)代入得
解得
∴y=x-1
令y=0,解得x=
∴P(,0)
此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法确定函数关系式.
18、(1);(2)
【解析】
(1)将因式分解,然后将a、b的值代入求值即可;
(2)根据二次根式有意义的条件,即可求出x和y的值,然后代入求值即可.
【详解】
解:(1)
将,代入,得
原式=
=
=
=
(2)由题意可知:
解得
∴x=5
将x=5代入中,解得:y=2
∴的平方根为:
此题考查的是因式分解、二次根式的混合运算、二次根式有意义的条件和求平方根,掌握因式分解的方法、二次根式的运算法则、二次根式有意义的条件和平方根的定义是解决此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、21
【解析】
由在平行四边形ABCD中,AC=14,BD=8,AB=10,利用平行四边形的性质,即可求得OA与OB的长,继而求得△OAB的周长.
【详解】
∵在平行四边形ABCD中,AC=14,BD=8,AB=10,
∴OA=AC=7,OB=BD=4,
∴△OAB的周长为:AB+OB+OA=10+7+4=21.
故答案为:21.
本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.
20、
【解析】
由题意:-a3b≥0,即ab≤0,
∵a<b,
∴a≤0<b;
所以原式=|a|=-a.
21、
【解析】
由等边三角形的性质得出CE=CB=1,AD=CD,∠DCA=∠ECB=∠ADC=60°,由平角的定义得出∠DCE=60°,由三角形内角和定理得出∠CED=90°,由含30°角的直角三角形的性质得出CE=CD,即AD=CD=2CE=2,DE=CD•sin60°=2×=,∠ADE=∠ADC+∠CDE=90°,则S△ADE=AD•DE,即可得出结果.
【详解】
解:∵△ACD和△CBE都是等边三角形,
∴CE=CB=1,AD=CD,∠DCA=∠ECB=∠ADC=60°,
∴∠DCE=180°﹣∠DCA﹣∠ECB=180°﹣60°﹣60°=60°,
∵∠CDE=30°,
∴∠CED=180°﹣∠CDE﹣∠DCE=180°﹣30°﹣60°=90°,
∴CE=CD,即AD=CD=2CE=2,
DE=CD•sin60°=2×=,
∠ADE=∠ADC+∠CDE=60°+30°=90°,
∴S△ADE=AD•DE=×2×=,
故答案为:.
本题考查了等边三角形的性质、三角形内角和定理、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握等边三角形的性质,证明三角形是含30°角直角三角形是解题的关键.
22、1
【解析】
试题解析:连接EF,
∵OD=OC,
∵OE⊥OF
∴∠EOD+∠FOD=90°
∵正方形ABCD
∴∠COF+∠DOF=90°
∴∠EOD=∠FOC
而∠ODE=∠OCF=41°
∴△OFC≌△OED,
∴OE=OF,CF=DE=3cm,则AE=DF=4,
根据勾股定理得到EF==1cm.
故答案为1.
23、32
【解析】
根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.
【详解】
∵数据方差的计算公式是,
∴样本容量为8,平均数为4,
∴该组数据的总和为8×4=32,
故答案为:32
本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为x,则方差s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],平均数是指在一组数据中所有数据之和再除以数据的个数.
二、解答题(本大题共3个小题,共30分)
24、(1).(2)3.
【解析】
由一次函数的图象经过,两点,代入解析式可得,解得,,因此一次函数关系式为:,
根据一次函数关系式,把,代入可得:.
【详解】
解:一次函数的图象经过,两点,
依题意得,
解得,,
,
当时,.
本题主要考查待定系数法求一次函数关系式,解决本题的关键是要熟练掌握待定系数法求一次函数关系式.
25、(1)v关于t的函数表达式为v=,自变量的取值范围为t>0;(2)放水速度的范围为300≤x≤360立方米/小时.
【解析】
(1)由题意得vt=900,即v=,自变量的取值范围为t>0,
(2)把t=2.5,t=3代入求出相应的v的值,即可求出放水速度的范围.
【详解】
(1)由题意得:vt=900,
即:v=,
答:
(2)当t=2.5时,v==360,
当t=3时,v==300,
所以放水速度的范围为300≤v≤360立方米/小时,
答:所以放水速度的范围为300≤x≤360立方米/小时.
考查求反比例函数的关系式以及反比例函数图象上点的坐标特点,解题关键在于根据常用的数量关系得出函数关系式.
26、(1);(2)
【解析】
分析:
(1)按照“二次根式加减法法则”进行计算即可;
(2)根据“二次根式相关运算的运算法则”结合“平方差公式和完全平方公式”进行计算即可.
详解:
(1)原式= ==;
(2)原式= = = .
点睛:熟记“二次根式的相关运算法则和平方差公式及完全平方公式”是解答本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
山东菏泽郓城2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份山东菏泽郓城2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
吉林省长春市名校2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份吉林省长春市名校2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省南通市名校数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2024年江苏省南通市名校数学九年级第一学期开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。