搜索
    上传资料 赚现金
    英语朗读宝

    天津市塘沽区一中学2024年数学九年级第一学期开学质量检测试题【含答案】

    天津市塘沽区一中学2024年数学九年级第一学期开学质量检测试题【含答案】第1页
    天津市塘沽区一中学2024年数学九年级第一学期开学质量检测试题【含答案】第2页
    天津市塘沽区一中学2024年数学九年级第一学期开学质量检测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    天津市塘沽区一中学2024年数学九年级第一学期开学质量检测试题【含答案】

    展开

    这是一份天津市塘沽区一中学2024年数学九年级第一学期开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在四边形中,对角线,相交于点,,,添加下列条件,不能判定四边形是菱形的是( ).
    A.B.C.D.
    2、(4分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息,下列说法正确的是( )
    A.甲队开挖到30 m时,用了2 h
    B.开挖6 h时,甲队比乙队多挖了60 m
    C.乙队在0≤x≤6的时段,y与x之间的关系式为y=5x+20
    D.当x为4 h时,甲、乙两队所挖河渠的长度相等
    3、(4分)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( )
    A.B.
    C.D.
    4、(4分)下列二次概式中,最简二次根式是( )
    A.B.C.D.
    5、(4分)如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,使点D落在E处,CE交AB于点O,若BO=3m,则AC的长为( )
    A.6cmB.8cmC.5cmD.4cm
    6、(4分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab﹣b,若3⊕(x+2)>0,则x的取值范围是( )
    A.﹣1<x<1或x<﹣2B.x<﹣2或1<x<2
    C.﹣2<x<1或x>1D.x<﹣2或x>2
    7、(4分)下列二次根式中,化简后能与合并的是
    A.B.C.D.
    8、(4分)下列方程中属于一元二次方程的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD的度数为__________度.
    10、(4分)如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.
    11、(4分)一个三角形的底边长为5,高为h可以任意伸缩.写出面积S随h变化的函数解析式_____.
    12、(4分)如图,菱形ABCD中,DE⊥AB,垂足为点E,连接CE.若AE=2,∠DCE=30°,则菱形的边长为________.
    13、(4分)已知线段AB=100m,C是线段AB的黄金分割点,则线段AC的长约为。(结果保留一位小数)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣4=0有两个不相等的实数根.
    (1)求m的取值范围;
    (2)若m为正整数,且该方程的两个根都是整数,求m的值.
    15、(8分)某市米厂接到加工大米任务,要求天内加工完大米.米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止,设甲、乙两车间各自加工大米数量与甲车间加工时间(天)之间的关系如图1所示;未加工大米与甲车间加工时间(天)之间的关系如图2所示,请结合图像回答下列问题

    (1)甲车间每天加工大米__________;=______________;
    (2)直接写出乙车间维修设备后,乙车间加工大米数量与(天)之间的函数关系式,并指出自变量的取值范围.
    16、(8分)2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:
    (1)本次调查共选取 名居民;
    (2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;
    (3)如果该社区共有居民1600人,估计有多少人从不闯红灯?
    17、(10分)如图,在中,是边上一点,是的中点,过点作的平行线交的延长线于点,且,连接.
    (1)求证:是的中点;
    (2)当满足什么条件时,四边形是正方形,并说明理由.
    18、(10分)在平面直角坐标系xOy中,边长为5的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C.D都在第一象限。
    (1)当点A坐标为(4,0)时,求点D的坐标;
    (2)求证:OP平分∠AOB;
    (3)直接写出OP长的取值范围(不要证明).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一组数据3、4、5、5、6、7的方差是 .
    20、(4分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为__________.
    21、(4分)如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为_____.
    22、(4分)直线y=﹣2x﹣1向上平移3个单位,再向左平移2个单位,得到的直线是_____.
    23、(4分)在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,将四边形 的四边中点依次连接起来,得四边形到是平行四边形吗?请说明理由.
    25、(10分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练.王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的成绩,将两次测得的成绩制作成如图所示的统计图和不完整的统计表
    训练后学生成绩统计表
    根据以上信息回答下列问题
    (1)训练后学生成绩统计表中n= ,并补充完成下表:
    (2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?
    26、(12分)如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=1.
    (1)连接BC,求BC的长;
    (2)求△BCD的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    由,,证出四边形是平行四边形,
    A. ,根据邻边相等的平行四边形,可证四边形是菱形;
    B. ,对角线相等的平行四边形是矩形,不能证四边形是菱形;
    C. ,根据对角线互相垂直的平行四边形是菱形,可证四边形是菱形;
    D. ,证,根据等角对等边可证,即可证得四边形是菱形.
    【详解】
    ,,
    四边形是平行四边形,
    A. ,是菱形;
    B. ,是矩形,不是菱形;
    C. ,是菱形;
    D. ,
    是菱形;
    故本题的答案是:B
    本题考查了特殊四边形菱形的证明,平行四边形的证明,矩形的证明,注意对这些证明的理解,容易混淆,小心区别对比.
    2、D
    【解析】
    选项A,观察图象即可解答;选项B,观察图象可知开挖6h时甲队比乙队多挖:60-50=10(m),由此即可判定选项B;选项C,根据图象,可知乙队挖河渠的长度y(m)与挖掘时间x(h)之间的函数关系是分段函数,由此即可判定选项C;选项D,分别求得施工4小时时甲、乙两队所挖河渠的长度,比较即可解答.
    【详解】
    选项A,根据图示知,乙队开挖到30m时,用了2h,甲队开挖到30m时,用的时间是大于2h.故本选项错误;
    选项B,由图示知,开挖6h时甲队比乙队多挖:60-50=10(m),即开挖6 h时甲队比乙队多挖了10m.故本选项错误;
    选项C,根据图示知,乙队挖河渠的长度y(m)与挖掘时间x(h)之间的函数关系是分段函数:在0~2h时,y与x之间的关系式y=15x;在2~6h时,y与x之间的关系式y=5x+1.故本选项错误;
    选项D,甲队4h完成的工作量是:(60÷6)×4=40(m),
    乙队4h完成的工作量是:5×4+1=40(m),
    ∵40=40,
    ∴当x=4时,甲、乙两队所挖管道长度相同.故本选项正确;
    故选D.
    本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,读懂图象信息是解题的关键.
    3、D
    【解析】
    试题分析:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时最高水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选D.
    考点:函数的图象.
    4、C
    【解析】
    根据最简二次根式的定义即可求解.
    【详解】
    A. =2,故错误;
    B. =根号里含有小数,故错误;
    C. 为最简二次根式,正确;
    D. =2,故错误;
    故选C.
    此题主要考查最简二次根式定义,解题的关键是熟知最简二次根式的特点.
    5、D
    【解析】
    根据折叠前后角相等可证AO=CO,在直角三角形CBO中,运用勾股定理求得CO,再根据线段的和差关系和勾股定理求解即可.
    【详解】
    根据折叠前后角相等可知∠DCA=∠ACO,
    ∵四边形ABCD是矩形,
    ∴AB∥CD,AD=BC=4cm,
    ∴∠DCA=∠CAO,
    ∴∠ACO=∠CAO,
    ∴AO=CO,
    在直角三角形BCO中,CO= =5cm,
    ∴AB=CD=AO+BO=3+5=8cm,
    在Rt△ABC中,AC=cm,
    故选:D.
    本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
    6、C
    【解析】
    分3>x+2即x<1和3<x+2即x>1两种情况,根据新定义列出不等式求解可得.
    【详解】
    解:当3>x+2,即x<1时,3(x+2)+x+2>0,
    解得:x>-2,
    ∴-2<x<1;
    当3<x+2,即x>1时,3(x+2)-(x+2)>0,
    解得:x>-2,
    ∴x>1,
    综上,-2<x<1或x>1,
    故选C.
    本题主要考查解一元一次不等式组的能力,根据新定义分类讨论并列出关于x的不等式是解题的关键.
    7、B
    【解析】
    根据二次根式的性质把各选项的二次根式化简,再根据能合并的二次根式是同类二次根式解答.
    【详解】
    、,不能与合并,故本选项错误;
    、,能与合并,故本选项正确;
    、,不能与合并,故本选项错误;
    、,不能与合并,故本选项错误.
    故选.
    本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
    8、A
    【解析】
    根据一元二次方程的定义直接进行判断
    【详解】
    解:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程.符合这个定义.
    故选:A
    本题考查了一元二次方程的概念:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、45°
    【解析】
    求出∠ACD=67.5°,∠BCD=22.5°,根据三角形内角和定理求出∠B=67.5°,根据直角三角形斜边上中线性质求出BE=CE,推出∠BCE=∠B=67.5°,代入∠ECD=∠BCE-∠BCD求出即可.
    【详解】
    ∵∠ACD=3∠BCD,∠ACB=90°,
    ∴∠ACD=67.5°,∠BCD=22.5°,
    ∵CD⊥AB,
    ∴∠CDB=90°,
    ∴∠B=180°−90°−22.5°=67.5°,
    ∵∠ACB=90°,E是斜边AB的中点,
    ∴BE=CE,
    ∴∠BCE=∠B=67.5°,
    ∴∠ECD=∠BCE−∠BCD=67.5°−22.5°=45°.
    本题考查三角形内角和定理和直角三角形斜边上中线性质,解题的关键是掌握三角形内角和定理和直角三角形斜边上中线性质.
    10、4
    【解析】
    根据题意可证明四边形EFGH为菱形,故可求出面积.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,
    ∵E、F、G、H分别是四条边的中点,
    ∴AE=DG=BE=CG,AH=DH=BF=CF,
    ∴△AEH≌△DGH≌△BEF≌△CGF(SAS),
    ∴EH=EF=FG=GH,
    ∴四边形EFGH是菱形,
    ∵HF=2,EG=4,
    ∴四边形EFGH的面积为HF·EG=×2×4=4.
    此题主要考查菱形的判定与面积求法,解题的关键是熟知特殊平行四边形的性质与判定定理.
    11、
    【解析】
    直接利用三角形面积求法得出函数关系式.
    【详解】
    解:∵一个三角形的底边长为5,高为h可以任意伸缩,
    ∴面积S随h变化的函数解析式为:S=h•5=h.
    故答案为S=h.
    此题主要考查了函数关系式,正确记忆三角形面积是解题关键.
    12、
    【解析】
    由四边形ABCD为菱形性质得DC∥AB,则同旁内角互补,得∠CDE+∠DEB=180°,
    结合DE⊥AB,则DE⊥DC,已知∠DCE=30°,设DE=x, 用勾股定理把DC、AD、和DE用含x的代数式表示,在Rt△AED中,利用勾股列关系式求得x=, 则.
    【详解】
    解:∵四边形ABCD为菱形,
    ∴DC∥AB,
    ∴∠CDE+∠DEB=180°,
    ∵DE⊥AB,
    ∴DE⊥DC,
    ∵∠DCE=30°,
    设DE=x, 则EC=2x,

    ∴AD=DC=,
    在Rt△AED中,有AD2=DE2+AE2 ,
    解得x=,

    故答案为:.
    本题考查菱形的基本性质,能够灵活运用勾股定理是本题关键.
    13、61.8m或38.2m
    【解析】由于C为线段AB=100cm的黄金分割点,
    则AC=100×61.8m
    或AC=100-.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)
    【解析】
    (1)根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于m的不等式,求出不等式的解集即可得到m的范围;
    (2)由m为正整数,可得出m=1、2,将m=1或m=2代入原方程求出x的值,由该方程的两个根都是整数,即可确定m的值,
    【详解】
    解:
    (1)∵一元二次方程x2+2(m﹣1)x+m2﹣4=0有两个不相等的实数根,

    ∴;
    (2)∵m为正整数,
    ∴m=1或2,
    当m=1时,方程为:x2﹣3=0,解得:(不是整数,不符合题意,舍去),
    当m=2时,方程为:x2+2x=0,解得:都是整数,符合题意,
    综上所述:m=2.
    本题主要考查了根的判别式,掌握根的判别式是解题的关键.
    15、解:(1);; (2),
    【解析】
    (1)由图2可知,乙停工后,第二天均为甲生产的即186-161=20;第一天总共生产220-181=31,即a+20=31,所以a为11;
    (2)由图1可知,函数关系式经过点(2,11)和点(1,120),即可得到函数关系式.且 2≤x≤1.
    【详解】
    解:(1)由图2可知,乙停工后,第二天均为甲生产的,即186-161=20;
    ∴甲车间每天加工大米20t
    第一天总共生产:220-181=31,
    即a+20=31,所以a为11;
    故答案为20(t),11
    (2)设函数关系式y=kx+b
    由图1可知,函数关系式经过点(2,11)和点(1,120),
    代入得:y=31x-11,且 2≤x≤1.
    本题主要考查一次函数的知识点,熟练掌握一次函数的性质是解答本题的关键.
    16、(1)80人;(2)见解析;(3)1120人.
    【解析】
    (1)根据为A的人数与所占的百分比列式计算即可求出被调查的居民人数;
    (2)求出为C的人数,得到所占的百分比,然后乘以360°,从而求出扇形统计图中“C”所对扇形的圆心角的度数,然后补全条形统计图即可;
    (3)用全区总人数乘以从不闯红灯的人数所占的百分比,进行计算即可得解.
    【详解】
    (1)本次调查的居民人数=56÷70%=80人;
    (2)为“C”的人数为:80﹣56﹣12﹣4=8人,
    “C”所对扇形的圆心角的度数为:×360°=36°
    补全统计图如图;
    (3)该区从不闯红灯的人数=1600×70%=1120人.
    17、 (1)见解析;(2)见解析.
    【解析】
    (1)根据AAS判定,即可进行求解;
    (2)根据等腰直角三角形的性质及正方形的判定定理即可求解.
    【详解】
    (1)证明:∵,∴,
    ∵点为的中点,∴,
    在和中,,,,∴,
    ∴,∵,∴,∴是的中点.
    (2)解:当是等腰直角三角形时,四边形是正方形,
    理由如下:∵,∴,
    ∵,∴;
    ∵,,
    ∴四边形是平行四边形,
    ∵,,
    ∴,,
    ∴平行四边形是正方形.
    此题主要考查正方形的判定,解题的关键是熟知全等三角形的判定与性质、平行四边形的判定及正方形的判定定理.
    18、(1)D(7,4);(2)见解析;(3)

    相关试卷

    天津市塘沽区名校2024年九年级数学第一学期开学调研试题【含答案】:

    这是一份天津市塘沽区名校2024年九年级数学第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    天津市南开区育红中学2025届九年级数学第一学期开学教学质量检测试题【含答案】:

    这是一份天津市南开区育红中学2025届九年级数学第一学期开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    杭州市建兰中学2025届数学九年级第一学期开学质量检测模拟试题【含答案】:

    这是一份杭州市建兰中学2025届数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map