西藏自治区日喀则市南木林县2025届数学九上开学达标检测试题【含答案】
展开这是一份西藏自治区日喀则市南木林县2025届数学九上开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,四象限,则k的取值可能是,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知长方形ABCD中AB = 8cm,BC = 10cm,在边CD上取一点E,将△ADE折叠,使点D恰好落在BC边上的点F,则CF的长为( )
A.2cmB.3cmC.4cmD.5cm
2、(4分)若反比例函数y=的图象位于第二、四象限,则k的取值可能是( )
A.﹣1B.1C.2D.3
3、(4分)下列等式中,从左到右的变形是因式分解的是( )
A.B.
C.D.
4、(4分)若正比例函数的图象经过(1,-2),则这个图象必经过点( )
A.(-1,-2)B.(-1,2)C.(2,-1)D.(-2,-1)
5、(4分)下列各式正确的是( )
A.= ±3 B.= ±3 C.=3 D.=-3
6、(4分)在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=( )
A.10B.15C.30D.50
7、(4分)下列图案:
其中,中心对称图形是( )
A.①②B.②③C.②④D.③④
8、(4分)下列命题中:①两直角边对应相等的两个直角三角形全等;②两锐角对应相等的两个直角三角形全等;③斜边和一直角边对应相等的两个直角三角形全等;④一锐角和斜边对应相等的两个直角三角形全等;⑤一锐角和一边对应相等的两个直角三角形全等.其中正确的个数有( )
A.2个B.3个C.4个D.5个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点B是反比例函数在第二象限上的一点,且矩形OABC的面积为4,则k的值为_______________.
10、(4分)不等式2x-1>x解集是_________.
11、(4分)中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.
12、(4分)把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为_____.
13、(4分)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:
根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如扇形图所示,每得一票记作1分.
(l)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到 0.01 )?
(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5 : 2 : 3的比例确定个人成绩,那么谁将被录用?
15、(8分)为了响应“五水共治,建设美丽永康”的号召,某小区业委会随机调查了该小区20户家庭5月份的用水量,结果如下表:
(1)计算这20户家庭5月份的平均用水量;
(2)若该小区有800户家庭,估计该小区5月份用水量多少吨?
16、(8分)在进行二次根式运算时,我们有时会碰上如这样的式子,我们还可以将其进一步化简:以上这种化简过程叫做分母有理化.还可以尝试用以下方法化简:
(1)请用两种不同的方法化简;
(2)请任选一种方法化简:
17、(10分)已知△ABC的三边长a、b、c满足|a-4|+(2b- 12)2+ =0,试判断△ABC的形状,并说明理由.
18、(10分)如图所示,△A′B′C′是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).
(1)请写出三角形ABC平移的过程;
(2)分别写出点A′,B′,C′ 的坐标.
(3)求△A′B′C′的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在菱形ABCD中,M是BC边上的点(不与B,C两点重合),AB=AM,点B关于直线AM对称的点是N,连接DN,设∠ABC,∠CDN的度数分别为,,则关于的函数解析式是_______________________________.
20、(4分)若二次函数y=ax2﹣bx+5(a≠5)的图象与x轴交于(1,0),则b﹣a+2014的值是_____.
21、(4分)如图,已知△ABC∽△ADB,若AD=2,CD=2,则AB的长为_____.
22、(4分)当a=______时,的值为零.
23、(4分)将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图①,在平面直角坐标系中,直线:分别与轴、轴交于点、,且与直线:交于点,以线段为边在直线的下方作正方形,此时点恰好落在轴上.
(1)求出三点的坐标.
(2)求直线的函数表达式.
(3)在(2)的条件下,点是射线上的一个动点,在平面内是否存在点,使得以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标;若不存在,请说明理由.
25、(10分)如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,AC、DE相交于点O.
(1)求证:四边形ADCE是矩形.
(2)若∠AOE=60°,AE=4,求矩形ADCE对角线的长.
26、(12分)已知:如图,在中,,cm,cm.直线 从点出发,以2 cm/s的速度向点方向运动,并始终与平行,与线段交于点.同时,点从点出发,以1cm/s的速度沿向点运动,设运动时间为(s) () .
(1)当为何值时,四边形是矩形?
(2)当面积是的面积的5倍时,求出的值;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分析:由将△ADE折叠使点D恰好落在BC边上的点F可得Rt△ADE≌Rt△AFE,所以AF=10cm.在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF的长,进而得到结论.
详解:∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADE≌Rt△AFE,∴AF=10cm.在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4(cm).
故选C.
点睛:本题主要考查了图形的翻折变换以及勾股定理、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.
2、A
【解析】
根据反比例函数的图像与性质解答即可.
【详解】
∵反比例函数y=的图象位于第二、四象限,
∴k<0,
∴k的取值可能是-1.
故选A.
本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内;当 k<0,反比例函数图象的两个分支在第二、四象限.
3、D
【解析】
根据因式分解的定义,逐一判断选项,即可得到答案.
【详解】
∵是整式的乘法,不是因式分解,
∴A不符合题意,
∵不是因式分解,
∴B不符合题意,
∵不是因式分解,
∴C不符合题意,
∵是因式分解,
∴D符合题意.
故选D.
本题主要考查因式分解的定义,掌握因式分解的定义,是解题的关键.
4、B
【解析】
求出函数解析式,然后根据正比例函数的定义用代入法计算.
【详解】
解:设正比例函数的解析式为y=kx(k≠0),
因为正比例函数y=kx的图象经过点(1,-2),
所以-2=k,
解得:k=-2,
所以y=-2x,
把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,
所以这个图象必经过点(-1,2).
故选B.
本题考查正比例函数的知识.关键是先求出函数的解析式,然后代值验证答案.
5、C
【解析】
根据二次根式的性质化简即可.
【详解】
解:A.= 3,不符合题意;
B.= 3,不符合题意;
C.==3 ,C符合题意;
D.==3,不符合题意.
故选C.
本题考查了二次根式的性质与化简.熟练掌握二次根式的性质是解答本题的关键.
6、D
【解析】
试题分析:根据题意可知AB为斜边,因此可根据勾股定理可知=25,因此可知=25×2=50.
故选D.
点睛:此题主要考查了勾股定理的应用,解题关键是根据勾股定理列出直角三角形三边关系的式子,然后化简代换即可.
7、D
【解析】
试题分析:根据中心对称图形的概念:绕某点旋转180°,能够与原图形完全重合的图形.可知①不是中心对称图形;②不是中心对称图形;③是中心对称图形;④是中心对称图形.
故选D.
考点:中心对称图形
8、C
【解析】
根据全等三角形的判定定理逐项分析,作出判断即可.
【详解】
解:①两直角边对应相等,两直角相等,所以根据SAS可以判定两直角边对应相等的两个直角三角形全等.故①正确;
②两锐角对应相等的两个直角三角形不一定全等,因为对应边不一定相等.故②错误;
③斜边和一直角边对应相等的两个直角三角形,可以根据HL判定它们全等.故③正确;
④一锐角和斜边对应相等的两个直角三角形,可以根据AAS判定它们全等.故④正确;
⑤一锐角和一边对应相等的两个直角三角形,可以根据AAS或ASA判定它们全等.故⑤正确.
综上所述,正确的说法有4个.
故选:C.
本题考查了直角三角形全等的判定.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
根据矩形的面积求出xy=−1,即可得出答案.
【详解】
设B点的坐标为(x,y),
∵矩形OABC的面积为1,
∴−xy=1,
∴xy=−1,
∵B在上,
∴k=xy=−1,
故答案为:-1.
本题考查了矩形的性质和反比例函数图象上点的坐标特征,能求出xy=−1和k=xy是解此题的关键.
10、x>1
【解析】
将不等式未知项移项到不等式左边,常数项移项到方程右边,合并后将x的系数化为1,即可求出原不等式的解集.
【详解】
解:2x-1>x,
移项得:2x-x>1,
合并得:x>1,
则原不等式的解集为x>1.
故答案为:x>1
此题考查了一元一次不等式的解法,解一元一次不等式的步骤为:去分母,去括号,移项,合并同类项,将x的系数化为1求出解集.
11、45°
【解析】
根据正多边形的外角度数等于外角和除以边数可得.
【详解】
∵硬币边缘镌刻的正多边形是正八边形,
∴它的外角的度数等于360÷8=45°.
故答案为45°.
本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.
12、y=﹣x+1
【解析】
根据“上加下减”的平移规律可直接求得答案.
【详解】
解:把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为y=﹣x﹣1+2,即y=﹣x+1.
故答案为:y=﹣x+1.
本题考查一次函数图象与几何变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.
13、110°
【解析】
已知∠1=20°,可求得∠3=90°-20°=70°,再由矩形的对边平行,根据两直线平行,同旁内角互补可得∠2+∠3=180°,即可得∠2=110°.
三、解答题(本大题共5个小题,共48分)
14、(1)候选人乙将被录用;(2)候选人丙将被录用.
【解析】
(1)先根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分,再根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;
(2)根据加权成绩分别计算三人的个人成绩,进行比较.
【详解】
解:(l)甲、乙、丙的民主评议得分分别为:甲:200×25%=50 分,
乙:200×40%=80 分,丙:200×35%=70 分.
甲的平均成绩为(分),
乙的平均成绩为:(分),
丙的平均成绩(分).
由于1.67>1>2.67,所以候选人乙将被录用.
(2)如果将笔试、面试、民主评议三项测试得分按5 : 2 : 3的比例确定个人成绩,那么,甲的个人成绩为:(分)
乙的个人成绩为:(分).
丙的个人成绩为:(分)
由于丙的个人成绩最高,所以候选人丙将被录用.
本题考查加权平均数的概念及求法,要注意各部分的权重与相应的数据的关系,牢记加权平均数的计算公式是解题的关键.
15、(1)11吨;(2)8800吨.
【解析】
根据统计表信息:这20户家庭5月份的平均用水量为;
根据(1)估计该小区5月份用水量为.
【详解】
解:这20户家庭5月份的平均用水量为(吨);
估计该小区5月份用水量为吨.
本题考核知识点:平均数,用样本估计总体. 解题关键点:熟记平均数公式.
16、(1);(2).
【解析】
(1)利用分母有理化计算或把分子因式分解后约分;
(2)先分母有理化,然后合并即可.
【详解】
(1)方法一:
方法二:
(2)原式,
,
,
.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
17、△ABC为直角三角形,理由见解析.
【解析】
根据绝对值、平方、二次根式的非负性即可列出式子求出a,b,c的值,再根据勾股定理即可判断.
【详解】
△ABC为直角三角形,理由,
由题意得a-4=0.2b-12=0,10-c=0 ,
所以a=8、b=6,c=10.
所以a2 +b2=c2 , △ABC为直角三角形.
此题主要考查勾股定理的应用,解题的关键是根据非负性求出各边的长.
18、(1)见解析;(2)A′(2,3) B′(1,0) C′(5,1);(3)5.5
【解析】
(1)由x1+6-x1=6,y1+4-y1=4得平移规律;
(2)根据(1)中的平移规律即可得到点A′,B′,C′的坐标;
(3)把△A′B′C′补形为一个长方形后,利用面积的和差关系求△A′B′C′的面积.
【详解】
(1) △ABC先向右平移6个单位,再向上平移4个单位得到△A′B′C′或△ABC先向上平移4个单位,再向右平移6个单位得到△A′B′C′
(2) A′(2,3) B′(1,0) C′(5,1);
(3)S△A′B′C′=4×3−×3×1−×3×2−×1×4=12−1.5−3−2=5.5.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先根据菱形的性质得出∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC,进而得出∠BAM,然后根据对称性得出∠AND=∠AND==180°-,分情况求解即可.
【详解】
∵菱形ABCD中,AB=AM,
∴∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC
∴∠ABC+∠BAD=180°,
∴∠BAD=180°-
∵AB=AM,
∴∠AMB=∠ABC=
∴∠BAM=180°-∠ABC-∠AMB=180°-2
连接BN、AN,如图:
∵点B关于直线AM对称的点是N,
∴AN=AB,∠MAN=∠BAM=180°-2,即∠BAN=2∠BAM=360°-4
∴AN=AD,∠DAN=∠BAD-∠BAN=180°--(360°-4)=3-180°
∴∠AND=∠AND==180°-
∵M是BC边上的点(不与B,C两点重合),
∴
∴
若,即时,
∠CDN=∠ADC-∠AND=,即;
若即时,
∠CDN=∠AND-∠ADC =,即
∴关于的函数解析式是
故答案为:.
此题主要考查菱形的性质与一次函数的综合运用,熟练掌握,即可解题.
20、1.
【解析】
把(1,0)代入y=ax2-bx+5得a-b+5=0,然后利用整体代入的方法计算b-a+2014的值.
【详解】
解:把(1,0)代入y=ax2-bx+5得a-b+5=0,
所以b-a=5,
所以b-a+2014=5+2014=1.
故答案为1.
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.
21、2.
【解析】
利用相似三角形的性质即可解决问题.
【详解】
∵△ABC∽△ADB,
∴,
∴AB2=AD•AC=2×4=8,
∵AB>0,
∴AB=2,
故答案为:2.
此题考查相似三角形的性质定理,相似三角形的对应边成比例.
22、﹣1.
【解析】
根据分式的值为零的条件列式计算即可.
【详解】
由题意得:a2﹣1=2,a﹣1≠2,
解得:a=﹣1.
故答案为:﹣1.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为2;②分母不为2.这两个条件缺一不可.
23、y=3x-1
【解析】
∵y=3x+1的图象沿y轴向下平移2个单位长度,
∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.
故答案为y=3x﹣1.
二、解答题(本大题共3个小题,共30分)
24、(1),,;(2);(3)存在,,,.
【解析】
(1)利用一次函数图象上点的坐标特征可求出点B,C的坐标,联立直线l1,l2的解析式成方程组,通过解方程组可求出点A的坐标;
(2)过点A作AF⊥y轴,垂足为点F,则△ACF≌△CDO,利用全等三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法即可求出直线CD的解析式;
(3)分OC为对角线及OC为边两种情况考虑:①若OC为对角线,由菱形的性质可求出点P的纵坐标,再利用一次函数图象上点的坐标特征可求出点P1的坐标;②若OC为边,设点P的坐标为(m,2m+6),分CP=CO和OP=OC两种情况,利用两点间的距离公式可得出关于m的方程,解之取其负值,再将其代入点P的坐标中即可得出点P2,P3的坐标.
【详解】
(1)∵直线:,
∴当时,;当时,,
∴,,
解方程组:得:,
∴点的坐标为;
(2)如图1,作,则,
∵四边形为正方形,
∴,
∵,,
∴,
∵
∴,
∴,
∵,,
∴,
∴
设直线的解析式为,
将、代入得:,
解得:,
∴直线的解析式为
(3)存在
①以为对角线时,如图2所示,
则PQ垂直平分CO,
则点P的纵坐标为:,
当y=3时,,解得:x=
∴点;
②以为边时,如图2,设点P(m,2m+6),
当CP=CO时,,
解得:(舍去)
∴,
当OP=OC时,,
解得:(舍去)
∴
综上所述,在平面内是否存在点,使得以、、、为顶点的四边形是菱形,,,.
本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式、菱形的性质以及两点间的距离,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B,C的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)分OC为对角线及OC为边两种情况,利用菱形的性质求出点P的坐标.
25、(1)证明见解析;(2)1.
【解析】
分析:(1)根据四边形ABDE是平行四边形和AB=AC,推出AD和DE相等且互相平分,即可推出四边形ADCE是矩形.
(2)根据∠AOE=60°和矩形的对角线相等且互相平分,得出△AOE为等边三角形,即可求出AO的长,从而得到矩形ADCE对角线的长.
详解:(1)∵四边形ABDE是平行四边形,
∴AB=DE,
又∵AB=AC,
∴DE=AC.
∵AB=AC,D为BC中点,
∴∠ADC=90°,
又∵D为BC中点,
∴CD=BD.
∴CD∥AE,CD=AE.
∴四边形AECD是平行四边形,
又∴∠ADC=90°,
∴四边形ADCE是矩形.
(2)∵四边形ADCE是矩形,
∴AO=EO,
∴△AOE为等边三角形,
∴AO=4,
故AC=1.
点睛:本题考查了矩形的判定和性质,二者结合是常见的出题方式,要注意灵活运用等边三角形的性质、等腰三角形的性质和三角形中位线的性质.
26、(1);(2)。
【解析】
(1)首先根据勾股定理计算AB的长,再根据相似比例表示PE的长度,再结合矩形的性质即可求得t的值.
(2)根据面积相等列出方程,求解即可.
【详解】
解:(1)在中,,
,当时,四边形PECF是矩形,
解得
(2)由题意
整理得,解得
,面积是的面积的5倍。
本题主要考查矩形的动点问题,这是近几年的考试热点,必须熟练掌握.
题号
一
二
三
四
五
总分
得分
批阅人
5月份用水量(吨)
5
10
11
13
15
20
户数
3
5
6
3
2
1
相关试卷
这是一份日喀则市2024年九上数学开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届西藏自治区日喀则市南木林县数学九年级第一学期开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份西藏自治区日喀则市南木林县2023-2024学年八上数学期末监测试题含答案,共7页。试卷主要包含了已知,计算的结果是,若分式的值为,则的值是等内容,欢迎下载使用。