终身会员
搜索
    上传资料 赚现金

    新疆库车县2025届九年级数学第一学期开学复习检测试题【含答案】

    立即下载
    加入资料篮
    新疆库车县2025届九年级数学第一学期开学复习检测试题【含答案】第1页
    新疆库车县2025届九年级数学第一学期开学复习检测试题【含答案】第2页
    新疆库车县2025届九年级数学第一学期开学复习检测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新疆库车县2025届九年级数学第一学期开学复习检测试题【含答案】

    展开

    这是一份新疆库车县2025届九年级数学第一学期开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知一次函数与反比例函数的图象相交于,两点,当时,实数的取值范围是( )
    A.或B.或
    C.或D.
    2、(4分)下列运算正确的是( )
    A.B.(m2)3=m5C.a2•a3=a5D.(x+y)2=x2+y2
    3、(4分)如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形( )
    A.∠1=∠2B.BE=DFC.∠EDF=60°D.AB=AF
    4、(4分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )
    A.2﹣B.1C.D.﹣l
    5、(4分)已知是一元二次方程的一个实数根,则的取值范围为( )
    A.B.C.D.
    6、(4分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.下列说法正确的是( )
    A.小明的成绩比小强稳定
    B.小明、小强两人成绩一样稳定
    C.小强的成绩比小明稳定
    D.无法确定小明、小强的成绩谁更稳定
    7、(4分)一次函数y=﹣3x+5的图象不经过的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    8、(4分)若二次根式有意义,则x的取值范围是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一次函数,那么__________
    10、(4分)如图,如果甲图中的阴影面积为S1,乙图中的阴影面积为S2,那么=________.(用含a、b的代数式表示)
    11、(4分)命题“角平分线上的点到这个角的两边的距离相等”的逆命题是______,它是___命题(填“真”或“假”).
    12、(4分)一组数据2,3,x,5,7的平均数是4,则这组数据的众数是 .
    13、(4分)一元二次方程x2﹣4=0的解是._________
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,直线l 在平面直角坐标系中,直线l与y轴交于点A,点B(-3,3)也在直线1上,将点B先向右平移1个单位长度、再向下平移2个单位长度得到点C,点C恰好也在直线l上.
    (1)求点C的坐标和直线l的解析式
    (2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l上;
    (3)已知直线l:y=x+b经过点B,与y轴交于点E,求△ABE的面积.
    15、(8分)如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.
    (1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;
    (2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.
    ①当t为何值时,点P、M、N在一直线上?
    ②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
    16、(8分)如图,四边形是矩形纸片且,对折矩形纸片,使与重合,折痕为,展平后再过点折叠矩形纸片,使点落在上的点处,折痕与相交于点,再次展开,连接,.
    (1)连接,求证:是等边三角形;
    (2)求,的长;
    (3)如图,连接将沿折叠,使点落在点处,延长交边于点,已知,求的长?
    17、(10分)解方程:x2- 4x= 1.
    18、(10分)在平面直角坐标系xOy中,直线l与x轴,y轴分别交于A、B两点,且过点B(0,4)和C(2,2)两点.
    (1)求直线l的解析式;
    (2)求△AOB的面积;
    (3)点P是x轴上一点,且满足△ABP为等腰三角形,直接写出所有满足条件的点P的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知关于的一元二次方程的一个根是2,则______.
    20、(4分)计算:= ___________.
    21、(4分)若分式的值与1互为相反数,则x的值是__________.
    22、(4分)如图,矩形ABCD中,,,把矩形ABCD绕点A顺时针旋转,当点D落在射线CB上的点P处时,那么线段DP的长度等于_________.
    23、(4分)已知,则代数式的值为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,,平分交于点,于点,交于点,连接,求证:四边形是菱形.
    25、(10分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过点A作AE//BC与过点D作CD的垂线交于点E.
    (1)如图1,若CE交AD于点F,BC=6,∠B=30°,求AE的长
    (2)如图2,求证AE+CE=BC
    26、(12分)如图,在平行四边形中,对角线、相交于点,是延长线上的点,且为等边三角形.
    (1)四边形是菱形吗?请说明理由;
    (2)若,试说明:四边形是正方形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    由函数图像可得y1>y2时,一次函数图象在反比例函数图象的上方,即可确定答案.
    【详解】
    解:当,表示一次函数图象在反比例函数图象上方时的取值范围,由题图可知或.故答案为C.
    本题主要考查一次函数和不等式的关系,理解函数图像与不等式解集的关系是解答本题的关键.
    2、C
    【解析】
    A、=3,本选项错误;
    B、(m2)3=m6,本选项错误;
    C、a2•a3=a5,本选项正确;
    D、(x+y)2=x2+y2+2xy,本选项错误,
    故选C
    3、B
    【解析】
    由正方形的性质,可判定△CDF≌△CBF,则BF=FD=BE=ED,故四边形BEDF是菱形.
    【详解】
    由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,
    ∴△CDF≌△CBF,
    ∴BF=FD,
    同理,BE=ED,
    ∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.
    故选B.
    考查了菱形的判定,解题关键是灵活运用全等三角形的判定和性质,及菱形的判定.
    4、D
    【解析】
    ∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,
    ∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,
    ∴AD⊥BC,B′C′⊥AB,
    ∴AD=BC=1,AF=FC′=AC′=1,
    ∴DC′=AC′-AD=-1,
    ∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×( -1)2=-1,
    故选D.
    【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.
    5、B
    【解析】
    设u=,利用求根公式得到关于u的两个一元二次方程,并且这两个方程都有实根,所以由判别式大于或等于1即可得到ab≤.
    【详解】
    因为方程有实数解,故b2-4ac≥1.
    由题意有:或,设u=,
    则有2au2-u+b=1或2au2+u+b=1,(a≠1),
    因为以上关于u的两个一元二次方程有实数解,
    所以两个方程的判别式都大于或等于1,即得到1-8ab≥1,
    所以ab≤.
    故选B.
    本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)的求根公式:x=(b2-4ac≥1).
    6、A
    【解析】
    方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    【详解】
    ∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.
    平均成绩一样,小明的方差小,成绩稳定,
    故选A.
    本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
    错因分析 容易题.失分原因是方差的意义掌握不牢.
    7、C
    【解析】
    一次项系数-3<1,则图象经过二、四象限;常数项5>1,则图象还过第一象限.
    【详解】
    解:∵-3<1,∴图象经过二、四象限;
    又∵5>1,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.
    所以一次函数y=-3x+5的图象经过一、二、四象限,不经过第三象限.
    故选:C.
    一次函数的图象经过第几象限,取决于x的系数及常数是大于1或是小于1.可借助草图分析解答.
    8、D
    【解析】
    试题分析:根据二次根式的意义,可知其被开方数为非负数,因此可得x-2≥0,即x≥2.
    故选D
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、—1
    【解析】
    将x=−2代入计算即可.
    【详解】
    当x=−2时,f(−2)=3×(−2)+2=−1.
    故答案为:−1.
    本题主要考查的是求函数值,将x的值代入解析式解题的关键.
    10、
    【解析】
    左边阴影部分用大正方形面积减小正方形的面积,右边阴影部分的面积等于长乘以宽,据此列出式子,再因式分解、约分可得
    【详解】
    解:,
    故答案为:.
    本题主要考查因式分解的应用及分式的化简,根据图示列出面积比的算式是解题的关键.
    11、到角的两边距离相等的点在角平分线上, 真.
    【解析】
    把一个命题的条件和结论互换就得到它的逆命题.
    【详解】
    解:命题“角平分线上的点到这个角两边的距离相等”的逆命题是“到角的两边距离相等的点在角平分线上”,它是真命题.
    本题考查了互逆命题的知识和命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
    12、3
    【解析】
    试题分析:∵一组数据2,3,x,5,7的平均数是4
    ∴2+3+5+7+x=20,即x=3
    ∴这组数据的众数是3
    考点:1.平均数;2.众数
    13、x=±1
    【解析】
    移项得x1=4,
    ∴x=±1.
    故答案是:x=±1.
    三、解答题(本大题共5个小题,共48分)
    14、(1)(-2,1),y=-2x-3(2)点D在直线l上,理由见解析(3)13.5
    【解析】
    (1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程
    (2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可
    (3)根据点B的坐标求得直线l的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答
    【详解】
    (1)∵B(-3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,
    ∴-3+1=-2,3-2=1,
    ∴C的坐标为(-2,1)
    设直线l的解析式为y=kx+c,
    ∵点B,C在直线l上
    代入得
    解得k=-2,c=-3,
    ∴直线l的解析式为y=-2x-3
    (2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(-2,1),
    ∴-2-3=-5,1+6=7
    ∴D的坐标为(-5,7)
    代入y=-2x-3时,左边=右边,
    即点D在直线l上
    (3)把B的坐标代入y=x+b得:3=-3+b,
    解得:b=6
    ∴y=x+6,
    ∴E的坐标为(0,6),
    ∵直线y=-2x-3与y轴交于A点,
    ∴A的坐标为(0,-3)
    ∴AE=6+3=9;
    ∵B(-3,3)
    ∴△ABE的面积为×9×|-3|=13.5
    此题考查一次函数图象与几何变换,利用平移的性质是解题关键
    15、(1)在点P、Q运动过程中,始终有PQ⊥AC;理由见解析;(1)①当t=时,点P、M、N在一直线上;② 存在这样的t,故 当t=1或时,存在以PN为一直角边的直角三角形.
    【解析】
    (1)此问需分两种情况,当0<t≤5及5<t≤10两部分分别讨论得PQ⊥AC.
    (1)①由于点P、M、N在一直线上,则AQ+QM=AM,代入求得t的值.
    ②假设存在这样的t,使得△PMN是以PN为一直角边的直角三角形,但是需分点N在AD上时和点N在CD上时两种情况分别讨论.
    【详解】
    解:(1)若0<t≤5,则AP=4t,AQ=1t.
    则==,
    又∵AO=10,AB=10,∴==.
    ∴=.又∠CAB=30°,∴△APQ∽△ABO.
    ∴∠AQP=90°,即PQ⊥AC.
    当5<t≤10时,同理,可由△PCQ∽△BCO得∠PQC=90°,即PQ⊥AC.
    ∴在点P、Q运动过程中,始终有PQ⊥AC.
    (1)①如图,在Rt△APM中,∵∠PAM=30°,AP=4t,
    ∴AM=.
    在△APQ中,∠AQP=90°,
    ∴AQ=AP?cs30°=1t,
    ∴QM=AC-1AQ=10-4t.
    由AQ+QM=AM得:1t+10-4
    t=,
    解得t=.
    ∴当t=时,点P、M、N在一直线上.
    ②存在这样的t,使△PMN是以PN为一直角边的直角三角形.
    设l交AC于H.
    如图1,当点N在AD上时,若PN⊥MN,则∠NMH=30°.
    ∴MH=1NH.得10-4t-t=1×,解得t=1.
    如图1,当点N在CD上时,若PM⊥PN,则∠HMP=30°.
    ∴MH=1PH,同理可得t=.
    故当t=1或时,存在以PN为一直角边的直角三角形.
    16、(1)见解析;(2);(3).
    【解析】
    (1)由折叠知,据此得∠ENB=30°,∠ABN=60°,结合AB=BN即可得证;
    (2)由(1)得∠ABN=60°,由AB折叠到BN知∠ABM=30°,结合AB=6得,证EQ为△ABM的中位线得,再求出EN=,根据QN=EN-EQ可得答案;
    (3)连接FH,MK⊥BC,证Rt△FGH≌Rt△FCH得GH=CH=1,设MD=x,知MG=x,MH=x+1,KH=MD-CH=x-1,在Rt△MKH中,根据MK2+KH2=MH2可求出x的值,继而得出答案.
    【详解】
    解:(1)与重合后,折痕为,


    .

    为等边三角形.
    (2)由(1)得,
    折叠到,
    .
    ,
    .
    为的中点且,
    为的中位线.
    .
    ,,.
    .
    (3)连接,过点作于点.
    折叠到,


    又,
    .
    .设,

    .
    在中,,,解得,.
    本题是四边形的综合问题,解题的关键是掌握矩形的性质、折叠的性质、等边三角形的判定与性质及全等三角形的判定与性质、直角三角形的性质等知识点.
    17、x1=2+,x2=2-
    【解析】
    试题分析:方程两边都加上一次项系数一半的平方,进行配方,两边直接开平方即可求得方程的解.
    试题解析:x2-4x=1
    x2-4x+4=1+4
    (x-2)2=5
    x-2=
    即:x1=2+,x2=2-
    考点:解一元二次方程---配方法.
    18、(1)y=﹣x+4;(2)8;(3)点P坐标为(﹣4,0)或(4+4,0)或(4﹣4,0)或(0,0)
    【解析】
    (1)直线过(2,2)和(0,4)两点,则 待定系数法求解析式.
    (2)先求A点坐标,即可求△AOB的面积
    (3)分三类讨论,可求点P的坐标
    【详解】
    解(1)设直线l的解析式y=kx+b
    ∵直线过(2,2)和(0,4)

    解得:
    ∴直线l的解析式y=﹣x+4
    (2)令y=0,则x=4
    ∴A(4,0)
    ∴S△AOB=×AO×BO=×4×4=8
    (3)∵OA=4,OB=4
    ∴AB=4
    若AB=AP=4
    ∴在点A左边,OP=4﹣4,
    在点A右边,OP=4+4
    ∴点P坐标(4+4,0),(4﹣4,0)
    若BP=BP=4
    ∴P(﹣4,0)
    若AP=BP则点P在AB的垂直平分线上,
    ∵△AOB是等腰直角三角形,
    ∴AB的垂直平分线过点O
    ∴点P坐标(0,0)
    本题考查了待定系数法求一次函数解析式,等腰三角形的性质,关键是利用分类讨论的思想解决问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据关于x的一元二次方程x2−2ax+3a=0有一个根为2,将x=2代入方程即可求得a的值.
    【详解】
    解:∵关于x的一元二次方程x2−2ax+3a=0有一个根为2,
    ∴22−2a×2+3a=0,
    解得,a=1,
    故答案为1.
    此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可解决问题.
    20、
    【解析】
    解:2 -=
    故答案为:
    21、-1
    【解析】
    根据相反数的性质列出分式方程求解即可.
    【详解】
    ∵分式的值与1互为相反数

    解得
    经检验,当时,,所以是方程的根
    故答案为:.
    本题考查了分式方程的运算问题,掌握分式方程的解法、相反数的性质是解题的关键.
    22、
    【解析】
    【分析】画图,分两种情况:点P在B的右侧或左侧.根据旋转和矩形性质,运用勾股定理,分别求出BP和PC,便可求出PD.
    【详解】(1)如图,当P在B的右侧时,由旋转和矩形性质得:
    AP=AD=5,AB=CD=3,
    在直角三角形ABP中,BP=,
    所以,PC=BC-BP=5-4=1,
    在直角三角形PDC中,PD=,
    (2)如图,当点P在B的左侧时,由旋转和矩形性质得:
    AP=AD=5,AB=CD=3,
    在直角三角形APB中,PB=,
    所以,PC=BC+PB=5+4=9,
    在在直角三角形PDC中,PD=,
    所以,PD的长度为
    故答案为
    【点睛】本题考核知识点:矩形,旋转,勾股定理. 解题关键点:由旋转和矩形性质得到边边相等,由勾股定理求边长.
    23、3
    【解析】
    把已知值代入,根据二次根式的性质计算化简,灵活运用完全平方公式.
    【详解】
    解:因为
    所以
    二次根式的化简求值.
    二、解答题(本大题共3个小题,共30分)
    24、见解析
    【解析】
    根据题意首先利用ASA证明,再得出四边形是平行四边形,再利用四边相等来证明四边形是菱形即可.
    【详解】
    证明:∵,
    ∴,
    ∵平分交于点,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    在和中
    ,,,
    ∴,
    ∴,
    ∴四边形是平行四边形,
    ∵,
    ∴四边形是菱形
    此题考查全等三角形的判定与性质,平行四边形的判定,菱形的判定,解题关键在于利用平行线的性质来求证.
    25、(1)2;(2)见详解.
    【解析】
    (1)由点D是AB中点,∠B=30°得到△ACD是等边三角形,由30°角所对直角边等于斜边的一半,得到AC=,由BC=6,即可得到AC=,同理可计算得到;
    (2)延长ED,交BC于点G,可证△ADE≌△BDG,得到AE=BG,然后证明△CDE≌△CDG,得到CE=CG,然后即可得到AE+CE=BC.
    【详解】
    解:(1)在Rt△ABC中,∠ACB=90°,D是AB的中点,
    ∴AD=BD=CD,
    ∵∠B=30°,
    ∴∠BCD=∠B=30°,∠BAC=60°
    ∴△ACD是等边三角形.
    ∴AC=AD=
    ∵AE//BC,CD⊥DE,
    ∴∠CAE=∠ACB=90°,∠CDE=90°,
    ∴△ACE≌△DCE,
    ∴∠ACE=∠DCE=30°,
    ∴CE=2AE.
    在Rt△ABC中,,BC=6,
    ∴,
    ∴,
    同理,在Rt△ACE中,
    解得:,
    ∴AE的长度为:2.
    (2)如图,延长ED,交BC于点G,则
    ∵点D是AB的中点,
    ∴AD=BD,
    ∵AE∥BC,
    ∴∠EAD=∠GBD,
    ∵∠ADE=∠BDG,
    ∴△ADE≌△BDG(ASA),
    ∴AE=BG.DE=DG
    ∵CD⊥ED,
    ∴∠CDE=∠CDG=90°,
    又CD=CD,
    ∴△CDE≌△CDG(SAS),
    ∴CE=CG,
    ∵BC=BG+CG,
    ∴BC=AE+EC.
    本题考查了全等三角形的判定和性质,平行线的性质,30°角所对直角边等与斜边的一半,解题的关键是掌握全等三角形的判定和性质,准确地得到边之间的关系.
    26、(1)四边形为菱形,理由见解析;(2)见解析
    【解析】
    (1)根据“对角线互相垂直的平行四边形是菱形”即可求证.
    (2)根据“有一个角是90°的菱形是正方形”即可求证.
    【详解】
    (1)四边形为菱形,理由:
    在平行四边形中,,
    是等边三角形.
    ,又、、、四点在一条直线上,.
    平行四边形是菱形. (对角线互相垂直的平行四边形是菱形)
    (2)由是等边三角形,,得到,,
    ..,
    四边形是菱形,,,
    四边形是正方形.(有一个角是90°的菱形是正方形)
    本题考查了平行四边形的性质以及菱形、正方形的判定定理,熟练掌握相关性质定理是解答本题的关键.
    题号





    总分
    得分

    相关试卷

    2025届新疆乌鲁木齐水磨沟区四校联考九年级数学第一学期开学复习检测模拟试题【含答案】:

    这是一份2025届新疆乌鲁木齐水磨沟区四校联考九年级数学第一学期开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年新疆维吾尔自治区阿克苏地区库车县九上数学开学预测试题【含答案】:

    这是一份2024-2025学年新疆维吾尔自治区阿克苏地区库车县九上数学开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年新疆阿克苏市沙雅县数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年新疆阿克苏市沙雅县数学九年级第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map