![新疆沙湾县2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16294517/0-1729953582437/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新疆沙湾县2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16294517/0-1729953582495/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新疆沙湾县2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16294517/0-1729953582515/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
新疆沙湾县2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】
展开
这是一份新疆沙湾县2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在一次数学测试中,将某班51名学生的成绩分为5组,第一组到第四组的频率之和为1.8,则第5组的频数是( )
A.11B.9C.8D.7
2、(4分)正方形具有而矩形不一定具有的性质是 ( )
A.对角线互相垂直B.对角线互相平分
C.对角线相等D.四个角都是直角
3、(4分)如图,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是( )
A.1B.2C.3D.4
4、(4分)方程①=1;②x2=7;③x+y=1;④xy=1.其中为一元二次方程的序号是( )
A.①B.②C.③D.④
5、(4分)反比例函数的图象的一支在第二象限,则的取值范围是()
A.B.C.D.
6、(4分)如图,在矩形中,,,为上的一点,设,则的面积与之间的函数关系式是
A.B.C.D.
7、(4分)如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为( )
A.B.C.D.
8、(4分)下列二次根式是最简二次根式的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x,y,那么=_____.
10、(4分)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.
11、(4分)如图,在菱形ABCD中,AB=5,对角线AC=1.若过点A作AE⊥BC,垂足为E,则AE的长为_________.
12、(4分)若代数式在实数范围内有意义,则的取值范围为____.
13、(4分)若二次根式有意义,则的取值范围为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:
(1)求这两种货车各用多少辆?
(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);
(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.
15、(8分)已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象.
(1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围;
(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
16、(8分)先阅读下面的村料,再分解因式.
要把多项式分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得
.
这时,由于中又有公困式,于是可提公因式,从而得到,因此有
.
这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.
请用上面材料中提供的方法因式分解:
请你完成分解因式下面的过程
______
;
.
17、(10分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)
(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?
(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按 5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
18、(10分)如图,在平面直角坐标系中,直线过点且与轴交于点,把点向左平移2个单位,再向上平移4个单位,得到点.过点且与平行的直线交轴于点.
(1)求直线CD的解析式;
(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交边BC于点E,AD=5,AB=3,则BE=________.
20、(4分)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=___时,△PQF为等腰三角形.
21、(4分)如图,四边形中,,,为上一点,分别以,为折痕将两个角(,)向内折起,点,恰好都落在边的点处.若,,则________.
22、(4分)设函数与y=x﹣1的图象的交点坐标为(a,b),则的值为 .
23、(4分)在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)化简或解方程:
(1)化简:
(2)先化简再求值:,其中.
(3)解分式方程:.
25、(10分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.
(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系;
(2)将正方形EFGH绕点E顺时针方向旋转.
①如图2,判断BH和AF的数量关系,并说明理由;
②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.
26、(12分)如图,在的方格中,的顶点均在格点上.试按要求画出线段(,均为格点),各画出一条即可.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
频率总和为1,由此求出第五组的频率,然后由频率是频数与总数之比,求出频数即可.
【详解】
解:第五组的频率为,所以第五组的频数为.
故答案为:A
本题考查了频率频数,掌握频率频数的定义是解题的关键.
2、A
【解析】
试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.
考点:(1)、正方形的性质;(2)、矩形的性质
3、D
【解析】
根据条件AD∥BC,AE∥CD可以得出四边形AECD是平行四边形,由AD=CD可以得出四边形AECD是菱形,就有AE=EC=CD=AD=2,就有∠2=∠1,有∠1=∠2,∠ABC=90°,可以得出∠1=∠2=∠1=10°,有∠BAC=60°,可以得出AC=2AB,有O是AC的中点,就有BO=AO=CO=AC.就有△ABO为等边三角形,∠1=∠2就有AE⊥BO,由∠1=10°,∠ABE=90°,就有BE=AE=1,由勾股定理就可以求出AB的值,从而得出结论.
【详解】
∵AD∥BC,AE∥CD,
∴四边形AECD是平行四边形.
∵AD=DC,
∴四边形AECD是菱形,
∴AE=EC=CD=AD=2,
∴∠2=∠1.
∵∠1=∠2,
∴∠1=∠2=∠1.
∵∠ABC=90°,
∴∠1+∠2+∠1=90°,
∴∠1=∠2=∠1=10°,
∴BE=AE,AC=2AB.本答案正确;
∴BE=1,
在Rt△ABE中,由勾股定理,得
AB=.本答案正确;
∵O是AC的中点,∠ABC=90°,
∴BO=AO=CO=AC.
∵∠1=∠2=∠1=10°,
∴∠BAO=60°,
∴△ABO为等边三角形.
∵∠1=∠2,
∴AE⊥BO.本答案正确;
∵S△ADC=S△AEC=,
∵CE=2,BE=1,
∴CE=2BE,
∴S△ACE=,
∴S△ACE=2S△ABE,
∴S△ADC=2S△ABE.本答案正确.
∴正确的个数有4个.
故选D.
本题考查了平行四边形的判定,菱形的判定及性质的运用,直角三角形的性质的性质的运用,勾股定理的运用,三角形的面积公式的运用,等边三角形的性质的运用.解答时证明出四边形AECD是菱形是解答本题的关键
4、B
【解析】
本题根据一元二次方程的定义解答.
【详解】
解:其中①为分式方程,②为一元二次方程,③为二元一次方程,④为二元二次方程,
故选B.
本题主要考查一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
5、A
【解析】
分析:当比例系数小于零时,反比例函数的图像经过二、四象限,由此得到k-1
相关试卷
这是一份新疆沙雅县2024-2025学年数学九年级第一学期开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南邵阳市城区2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)