新疆乌鲁木齐七十中学2024年九上数学开学经典模拟试题【含答案】
展开这是一份新疆乌鲁木齐七十中学2024年九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是( )
A.k>﹣1B.k>﹣1且k≠0C.k≠0D.k≥﹣1
2、(4分)为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:
在每天所走的步数这组数据中,众数和中位数分别是( )
A.1.3,1.1B.1.3,1.3C.1.4,1.4D.1.3,1.4
3、(4分)若x1、x2是x2+x﹣1=0方程的两个不相等的实数根,则x1+x2﹣x1x2的值为( )
A.+1B.﹣2C.﹣2D.0
4、(4分)如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF交于点D,则下列结论中不正确的是( )
A.△ABE≌△ACFB.点D在∠BAC的平分线上
C.△BDF≌△CDED.D是BE的中点
5、(4分)如图,是射线上一点,过作轴于点,以为边在其右侧作正方形,过的双曲线交边于点,则的值为
A.B.C.D.1
6、(4分)与可以合并的二次根式是( )
A.B.C.D.
7、(4分)已知y是x的一次函数,下表中列出了部分对应值:
则m等于( )
A.-1B.0C.D.2
8、(4分)、、为三边,下列条件不能判断它是直角三角形的是( )
A.B.,,
C.D.,,(为正整数)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.
10、(4分)关于x的方程的有两个相等的实数根,则m的值为________.
11、(4分)如果顺次连接四边形的四边中点得到的新四边形是菱形,则与的数量关系是___.
12、(4分)如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值范围是 .
13、(4分)如图,已知直线:与直线:相交于点,直线、分别交轴于、两点,矩形的顶点、分别在、上,顶点、都在轴上,且点与点重合,那么 __________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.
(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图1,若CB=a,CE=2a,求BM,ME的长;
(3)如图2,当∠BCE=45°时,求证:BM=ME.
15、(8分)如图,在中,点D,E分别是边BC,AC的中点,AD与BE相交于点点F,G分别是线段AO,BO的中点.
(1)求证:四边形DEFG是平行四边形;
(2)如图2,连接CO,若,求证:四边形DEFG是菱形;
(3)在(2)的前提下,当满足什么条件时,四边形DEFG能成为正方形.直接回答即可,不必证明
16、(8分) (1)计算:
(2)先化简,再求值:,其中
17、(10分)如图,△ABC中,∠ACB=90°,D.E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.
(1)求证:四边形ACEF是平行四边形;
(2)若四边形ACEF是菱形,求∠B的度数.
18、(10分)先化简,再求值:,其中x=.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.
那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性 _________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).
20、(4分)若点和点都在一次函数的图象上,则___选择“>”、“<”、“=”填空).
21、(4分)如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有___________个.
22、(4分)计算: =_____.
23、(4分)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解下列方程:
25、(10分)在△ABC 中,D 是 BC 边的中点,E、F 分别在 AD 及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF ≌△CDE;
(2)若 DE =BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.
26、(12分)如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:由方程kx2+2x﹣1=1有两个不相等的实数根可得知b2﹣4ac>1,结合二次项系数不为1,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.
由已知得:, 解得:k>﹣1且k≠1.
考点:根的判别式.
2、B
【解析】
在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.
【详解】
在这组数据中出现次数最多的是1.1,即众数是1.1.
要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.
故选B.
本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.
3、D
【解析】
根据韦达定理知x1+x2=﹣1、x1x2=﹣1,代入计算可得.
【详解】
解:∵x1、x2是x2+x﹣1=0方程的两个不相等的实数根,
∴x1+x2=﹣1、x1x2=﹣1,
∴原式=﹣1﹣(﹣1)=0,
故选:D.
本题主要考查根与系数的关系,解题的关键是掌握韦达定理和整体代入思想的运用.
4、D
【解析】
根据全等三角形的判定对各个选项进行分析,从而得到答案.做题时,要结合已知条件与三角形全等的判定方法逐个验证.
【详解】
∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A
∴△ABE≌△ACF(AAS),正确;
∵△ABE≌△ACF,AB=AC
∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°
∴DF=DE故点D在∠BAC的平分线上,正确;
∵△ABE≌△ACF,AB=AC
∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°
∴△BDF≌△CDE(AAS),正确;
D. 无法判定,错误;
故选D.
5、A
【解析】
设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入得到点A的坐标,结合正方形的性质,得到点C,点D和点E的横坐标,把点A的坐标代入反比例函数,得到关于m的k的值,把点E的横坐标代入反比例函数的解析式,得到点E的纵坐标,求出线段DE和线段EC的长度,即可得到答案.
【详解】
解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),
把x=m代入,得.
则点A的坐标为:(m,),线段AB的长度为,点D的纵坐标为.
∵点A在反比例函数上,
∴
即反比例函数的解析式为:
∵四边形ABCD为正方形,
∴四边形的边长为.
∴点C、点D、点E的横坐标为:
把x=代入得:.
∴点E的纵坐标为:,
∴CE=,DE=,
∴.
故选择:A.
本题考查了反比例函数和一次函数的结合,解题的关键是找到反比例函数与一次函数的交点坐标,结合正方形性质找到解题的突破口.
6、C
【解析】
先对各个选项中的二次根式化简为最简二次根式(被开方数中不含分母且被开方数中不含有开得尽方的因数或因式),再在其中找的同类二次根式(化成最简二次根式后的被开方数相同,这样的二次根式叫做同类二次根式.).
【详解】
A. 为最简二次根式,且与不是同类二次根式,故错误;
B. = -3,与不是同类二次根式,故错误;
C. ,与是同类二次根式,故正确;
D. 为最简二次根式,且与不是同类二次根式,故错误.
故选C.
本题考查二次根式的加减,能将各个选项中根式化简为最简二次根式,并能找对同类二次根式是本题的关键.
7、B
【解析】
由于一次函数过点(-1,1)、(1,-1),则可利用待定系数法确定一次函数解析式,然后把(0,m)代入解析式即可求出m的值.
【详解】
设一次函数解析式为y=kx+b,
把(−1,1)、(1,−1)代入
解得,
所以一次函数解析式为y=−x,
把(0,m)代入得m=0.
故答案为:B.
此题考查待定系数法求一次函数解析式,解题关键在于运用一次函数图象上点的坐标特征求解m.
8、C
【解析】
根据三角形内角和定理可得C是否是直角三角形;根据勾股定理逆定理可判断出A、B、D是否是直角三角形.
【详解】
解:A. 即,根据勾股定理逆定理可判断△ABC为直角三角形;
B. ,,,因为,即,,根据勾股定理逆定理可判断△ABC为直角三角形;
C. 根据三角形内角和定理可得最大的角,可判断△ABC为锐角三角形;
D. ,,(为正整数),因为,即,根据勾股定理逆定理可判断△ABC为直角三角形;
故选:C
本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.
【详解】
设AP,EF交于O点,
∵四边形ABCD为菱形,
∴BC∥AD,AB∥CD.
∵PE∥BC,PF∥CD,
∴PE∥AF,PF∥AE.
∴四边形AEFP是平行四边形.
∴S△POF=S△AOE.
即阴影部分的面积等于△ABC的面积.
∵△ABC的面积等于菱形ABCD的面积的一半,
菱形ABCD的面积=ACBD=5,
∴图中阴影部分的面积为5÷2=.
10、9
【解析】
因为一元二次方程有两个相等的实数根,所以△=b2-4ac=0,根据判别式列出方程求解即可.
【详解】
∵关于x的方程x2-6x+m=0有两个相等的实数根,
∴△=b2-4ac=0,
即(-6)2-4×1×m=0,
解得m=9
故答案为:9
总结:一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
11、
【解析】
先证明EFGH是平行四边形,再根据菱形的性质求解即可.
【详解】
如图1所示,连接AC,
∵E、F、G、H分别是四边形ABCD边的中点,
∴HE∥AC,HE=AC,GF∥AC,GF=AC,
∴HE=GF且HE∥GF;
∴四边形EFGH是平行四边形. 连接BD,如图2所示:
若四边形EFGH成为菱形,
则EF=HE,
由(1)得:HE=AC,
同理:EF=BD,
∴AC=BD;
故答案为:AC=BD.
本题考查了平行四边形的判定、中点四边形、菱形的性质、三角形中位线定理;熟练掌握三角形中位线定理是解决问题的关键.
12、c>1
【解析】
根据关于x的一元二次方程没有实数根时△<0,得出△=(-6)2-4c<0,再解不等式即可.
【详解】
∵关于x的一元二次方程x2-6x+c=0(c是常数)没有实根,
∴△=(-6)2-4c<0,
即36-4c<0,
解得:c>1.
故答案为c>1.
13、2:5
【解析】
把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长.联立方程组可求出交点C的坐标,继而求出三角形ABC的面积,再利用xD=xB=2易求D点坐标.又已知yE=yD=2可求出E点坐标.故可求出DE,EF的长,即可得出矩形面积.
【详解】
解:由 x+=0,得x=-1.
∴A点坐标为(-1,0),
由-2x+16=0,得x=2.
∴B点坐标为(2,0),
∴AB=2-(-1)=3.
由 ,解得,
∴C点的坐标为(5,6),
∴S△ABC=AB•6=×3×6=4.
∵点D在l1上且xD=xB=2,
∴yD=×2+=2,
∴D点坐标为(2,2),
又∵点E在l2上且yE=yD=2,
∴-2xE+16=2,
∴xE=1,
∴E点坐标为(1,2),
∴DE=2-1=1,EF=2.
∴矩形面积为:1×2=32,
∴S矩形DEFG:S△ABC=32:4=2:5.
故答案为:2:5.
此题主要考查了一次函数交点坐标求法以及图象上点的坐标性质等知识,根据题意分别求出C,D两点的坐标是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)BM=ME=;(3)证明见解析.
【解析】
(1)如图1,延长AB交CF于点D,证明BM为△ADF的中位线即可.
(2)如图2,作辅助线,推出BM、ME是两条中位线.
(3)如图3,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME.
【详解】
(1)如图1,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,
∴AB=BC=BD.
∴点B为线段AD的中点.
又∵点M为线段AF的中点,
∴BM为△ADF的中位线.
∴BM∥CF.
(2)如图2,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,
∴AB=BC=BD=a,AC=AD=a,
∴点B为AD中点,又点M为AF中点.
∴BM=DF.
分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=GE=2a,CG=CF=a.
∴点E为FG中点,又点M为AF中点.
∴ME=AG.
∵CG=CF=a,CA=CD=a,∴AG=DF=a.
∴BM=ME=.
(3)如图3,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,
∴AB=BC=BD,AC=CD.
∴点B为AD中点.
又点M为AF中点,∴BM=DF.
延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=EG,CF=CG.
∴点E为FG中点.
又点M为AF中点,∴ME=AG.
在△ACG与△DCF中,∵,
∴△ACG≌△DCF(SAS).
∴DF=AG,∴BM=ME.
15、 (1)见解析;(2)见解析;(3)见解析.
【解析】
(1)由三角形中位线性质得到,,故四边形DEFG是平行四边形;(2)同(1),由,证,得到菱形;(3)当时,四边形DEFG为正方形:点D,E分别是边BC,AC的中点,得点O是的重心,证,,结合平行线性质证,结合(2)可得结论.
【详解】
解:(1)点D,E分别是边BC,AC的中点,
,,
点F,G分别是线段AO,BO的中点,
,,
,,
四边形DEFG是平行四边形;
(2)点F,E分别是边OA,AC的中点,
,
,,
,
平行四边形DEFG是菱形;
(3)当时,四边形DEFG为正方形,
理由如下:点D,E分别是边BC,AC的中点,
点O是的重心,
,
,
,
,
,
,
菱形DEFG为正方形.
本题考核知识点:三角形中位线,菱形,正方形. 解题关键点:由所求分析必要条件,熟记相关判定定理.
16、 (1) 9−;(2) .
【解析】
(1)首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.
(2)首先化简,然后把x的值代入化简后的算式即可.
【详解】
(1) =8+2− −1=9−
(2)
=
=
=
x=4−2sin30°=4−2× =3
∴原式= =
此题考查实数的运算,分式的化简求值,零指数幂,负整数指数幂,解题关键在于掌握运算法则
17、(1)证明见解析;(2)30°.
【解析】
(1)由直角三角形斜边上的中线等于斜边的一半,得到CE=AE=BE,从而得到AF=CE,再由等腰三角形三线合一,得到∠1=∠2,从而有∠F=∠3,得到∠2=∠F,故CE∥AF,然后利用一组对边平行且相等的四边形是菱形证明;
(2)由菱形的性质,得到AC=CE,求出AC=CE=AE,从而得到△AEC是等边三角形,得出∠CAE=60°,然后根据直角三角形两锐角互余解答.
【详解】
解:(1)∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;
(2)∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.
本题考查菱形的性质;平行四边形的判定.
18、,.
【解析】
根据分式的运算法则把所给的分式化为最简,再将x的值代入计算即可求值.
【详解】
=
=
=
当x=时,
原式=.
本题考查了分式的化简求值,根据分式的运算法则把所给的分式化为最简是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、小于
【解析】
根据图形中的数据即可解答本题.
【详解】
解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,
∴凸面向上”的可能性 小于“凹面向上”的可能性.,
故答案为:小于.
本题考查模拟实验,可能性的大小,解答本题的关键是明确概率的定义,利用数形结合的思想解答.
20、>
【解析】
分别把点和点代入一次函数求出y1、y2的值,再比较出其大小即可.
【详解】
解: 和点都在一次函数的图象上,
y1=-1+2=1;
y2=-2+2=0
1>0
y1>y2.
故答案为:>
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
21、1
【解析】
根据题意画出图形,根据勾股定理的逆定理进行判断即可.
【详解】
如图所示:
当∠C为直角顶点时,有C1,C2两点;
当∠A为直角顶点时,有C3一点;
当∠B为直角顶点时,有C4,C1两点,
综上所述,共有1个点,
故答案为1.
本题考查的是勾股定理的逆定理,根据题意画出图形,利用数形结合求解是解答此题的关键.
22、
【解析】
=
23、50(1﹣x)2=1.
【解析】
由题意可得,
50(1−x)²=1,
故答案为50(1−x)²=1.
二、解答题(本大题共3个小题,共30分)
24、x1=5,x2=1.
【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
x2-10x+25=2(x-5),
(x-5)2-2(x-5)=0,
(x-5)(x-5-2)=0,
x-5=0,x-5-2=0,
x1=5,x2=1.
本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
25、见解析
【解析】
分析:
(1)由已知条件易得∠CED=∠BFD,BD=CD,结合∠BDF=∠CDE即可证得:△BDF≌△CDE;
(2)由△BDF≌△CDE易得DE=DF,结合BD=CD可得四边形BFCE是平行四边形,结合DE=BC可得EF=BC,由此即可证得平行四边形BFCE是矩形.
详解:
(1)∵CE∥BF,
∴∠CED=∠BFD.
∵D是BC边的中点,
∴BD=DC,
在△BDF和△CDE中, ,
∴△BDF≌△CDE(AAS).
(2)四边形BFCE是矩形.理由如下:
∵△BDF≌△CDE,
∴DE=DF,
又∵BD=DC,
∴四边形BFCE是平行四边形.
∵DE=BC,DE=EF,
∴BC=EF,
∴平行四边形BFCE是矩形.
点睛:熟悉“平行四边形和矩形的判定方法”是解答本题的关键.
26、教学楼A与办公楼B之间的距离大约为94.6米.
【解析】
由已知可得△ABP中∠A=60°∠B=45°且PC=60m,要求AB的长,可以先求出AC和BC的长就可转化为运用三角函数解直角三角形.
【详解】
由题意可知
∠ACP=∠BCP= 90°,∠APC=30°,∠BPC=45°
在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴
在Rt△ACP中,∵∠ACP=90°,∠APC=30°,
∴
∴
≈60+20×1.732 =94.64≈94.6(米)
答:教学楼A与办公楼B之间的距离大约为94.6米.
本题考查了解直角三角形的应用--方向角问题.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
题号
一
二
三
四
五
总分
得分
批阅人
步数(万步)
1.0
1.2
1.1
1.4
1.3
天数
3
3
5
7
12
x
-1
0
1
y
1
m
-1
相关试卷
这是一份上海延安中学2024-2025学年九上数学开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2024年新疆乌鲁木齐市数学九上开学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年新疆乌鲁木齐市第四中学数学九上开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。