新疆伊宁市第七中学2024年九上数学开学统考试题【含答案】
展开
这是一份新疆伊宁市第七中学2024年九上数学开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有( )
A.1个B.2个C.3个D.4个
2、(4分)下列关于x的方程是一元二次方程的是( )
A.B.C.D.
3、(4分)下列结论中,矩形具有而菱形不一定具有的性质是( )
A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直
4、(4分)若关于的方程的解为正数,则的取值范围是( )
A.且B.且 C. 且 D.
5、(4分)下列多项式中,能用完全平方公式分解因式的是( )
A.x2﹣x+1B.1﹣2xy+x2y2C.m2﹣2m﹣1D.
6、(4分)下列函数中,一次函数的是( )
A.y=B.y=C.y=x﹣1D.y=2x2+4
7、(4分)已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为( )
A.1或-5B.-5或3C.-3或1D.-3或5
8、(4分)如图,在▱ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有( )
A.2个B.3个C.4个D.5个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是__________.
10、(4分)已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点,则关于x的方程﹣3x+b=﹣kx+1的解为x=_____.
11、(4分)计算: =_____.
12、(4分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 ▲ 人.
13、(4分)已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:
(1) (2) (3)
15、(8分)甲乙两人参加某项体育训练,近期五次测试成绩得分情况如图所示:
(1)分别求出两人得分的平均数;
(2)谁的方差较大?
(3)根据图表和(1)的计算,请你对甲、乙两人的训练成绩作出评价.
16、(8分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
17、(10分)计算:
(1)
(2)()()
18、(10分)化简:
(1)2ab﹣a2+(a﹣b)2
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在数学课上,老师提出如下问题:如何使用尺规完成“过直线l外一点A作已知直线l的平行线”.
小云的作法如下:
(1)在直线l 上任取一点B,以点B为圆心,AB长为半径作弧, 交直线l 于点C;
(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;
(3)作直线AD.
所以直线AD即为所求.
老师说:“小云的作法正确”.
请回答:小云的作图依据是____________.
20、(4分)如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.
21、(4分)如图,在□ ABCD 中,E 为 BC 中点,DE、AC 交于 F 点,则=_______.
22、(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连接DE,若DE=2.5 cm,AB=4 cm,则BC的长为_______cm.
23、(4分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1)
(2).
25、(10分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.
26、(12分)如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.
(1)求证:△AEF≌△DCE.
(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据正方形的四条边都相等,对角线互相垂直平分且每一条对角线平分一组对角的性质,再加上各选项的条件,对各选项分析判断后即可得出正确选项的个数
【详解】
解:如图,连接BD,交AC于点O,
在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,AO=CO,BO=DO,
①在△ABE与△BCF中,
,
∴△ABE≌△BCF(ASA),
∴BE=BF,
∵AC⊥BD,
∴OE=OF,
所以四边形BEDF是菱形,故①选项正确;
②在正方形ABCD中,AC=BD,
∴OA=OB=OC=OD,
∵AE=CF,
∴OE=OF,又EF⊥BD,BO=OD,
∴四边形BEDF是菱形,故②选项正确;
③AB=AF,不能推出四边形BEDF其它边的关系,故不能判定是菱形,本选项错误;
④BE=BF,同①的后半部分证明,故④选项正确.
所以①②④共3个可以判定四边形BEDF是菱形.
故选:C.
本题主要考查菱形的判定定理,还综合考查了正方形的性质、全等三角形的判定和性质等,熟练掌握菱形的判定定理是解题的关键.
2、D
【解析】
根据一元二次方程的概念逐项进行判断即可.
【详解】
A、含有两上未知数,不符合一元二次方程的概念,故错误;
B、不是整式方程,故错误;
C、最高次数为3次,不符合一元二次方程的概念,故错误;
D、符合一元二次方程的概念,故正确,
故选D.
本题考查了一元二次方程的概念,熟练掌握“一元二次方程是指含有一个未知数,并且含有未知数的项的最高次数为2次的整式方程”是解题的关键.
3、C
【解析】
矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.
【详解】
A、菱形、矩形的内角和都为360°,故本选项错误;
B、对角互相平分,菱形、矩形都具有,故本选项错误;
C、对角线相等菱形不具有,而矩形具有,故本选项正确
D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,
故选C.
本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.
4、B
【解析】
先求得方程的解,再根据x>0,得到关a的不等式并求出a的取值范围.
【详解】
解:去分母得,2x+a=-x+2
解得
∵分母x-2≠0即x≠2
解得,a≠-1
又∵x>0
解得,a<2
则a的取值范围是a<2且a≠-1.
故选:B
此题主要考查了分式方程的解,要熟练掌握,解答此类问题的关键是“转化思想”的应用,并要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
5、B
【解析】
利用完全平方公式的结构特征判断即可.
【详解】
解:选项中的4个多项式中,能用完全平方公式分解因式的是1-2xy+x2y2=(1-xy)2,
故选B.
此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
6、C
【解析】
根据一次函数的定义逐项判断即可.
【详解】
A、y=是反比例函数,不是一次函数;
B、y=不是函数;
C、y=x﹣1是一次函数;
D、y=2x2+4是二次函数,不是一次函数;
故选:C.
本题考查了一次函数的定义,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数
7、D
【解析】
根据函数二次函数(为常数)可得函数对称轴为,由自变量的值满足时,其对应的函数值的最小值为4,再对h的大小进行分类讨论,当时,自变量的值满足时,y随x的增大而减小,当x=3时,y取得最小值为
,可解得h的值,并且注意检验h要满足;当时,自变量的值满足时,y随x的增大而增大,当时,y取得最小值为,可解得h的值,并且注意检验h要满足,即可得出答案.
【详解】
解:∵二次函数(为常数),
∴函数对称轴为;
∵函数的二次项系数a=1,
∴函数开口向上,
当时,的值满足在对称轴的左侧,y随x的增大而减小,
∴当x=3时,y取得最小值,此时,解得:
∵,
∴舍去,;
当时,的值满足在对称轴的右侧,y随x的增大而增大,
∴当时,y取得最小值,此时,解得:
∵,
∴舍去,;
综上所述,或;
故答案为D.
本题考查二次函数的最值与函数的增减性之间的关系,求出函数的对称轴,并且分析函数的增减性是做题关键.在分类讨论的时候一定要注意分类中的h是有取值范围的,在取值范围内的结果才是最终的正确结果.
8、C
【解析】
由翻折的性质可知,EB=EB',由E为AB的中点,得到EA=EB',根据三角形外角等于不相邻的两内角之和,找到与∠FEB相等的角,再根据AB∥CD,也可得到∠FEB=∠ACD.
【详解】
解:由翻折的性质可知:EB=EB',∠FEB=∠FEB';
∵E为AB的中点,
∴AE=BE=EB',
∴∠EAB'=∠EB'A,
∵∠BEB'=∠EAB'+∠EB'A,
∴2∠FEB=2∠EAB=2∠EB'A,
∴∠FEB=∠EAB=∠EB'A,
∵AB∥CD,
∴∠B'AE=∠ACD,
∴∠FEB=∠ACD,
∴与∠FEB相等的角有∠FEB',∠EAB',∠EB'A,∠ACD,
∴故选C.
此题考查翻折的性质,EA=EB'是正确解答此题的关键
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣3
【解析】
令时,解得,故与轴的交点为.由函数图象可得,当时,函数的图象在轴上方,且其函数图象在函数图象的下方,故解集是,所以关于的不等式的整数解为.
10、1
【解析】
由题意可知当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,由此即可得答案.
【详解】
∵直线y=﹣1x+b与直线y=﹣kx+1在同一坐标系中交于点,
∴当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,
∴关于x的方程﹣1x+b=﹣kx+1的解为x=1,
故答案为:1.
本题考查了一次函数与一元一次方程,熟知两条直线交点的横坐标使两个函数的值相等是解题的关键.
11、
【解析】
=
12、216
【解析】
由题意得,50个人里面坐公交车的人数所占的比例为:15/50 =30%,
故全校坐公交车到校的学生有:720×30%=216人.
即全校坐公交车到校的学生有216人.
13、x≥1.
【解析】
试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.
故答案为x≥1.
考点: 一次函数与一元一次不等式.
三、解答题(本大题共5个小题,共48分)
14、(1),.(2),.(3)原方程无解
【解析】
(1)方程利用公式法求出解即可;
(2)方程利用因式分解法求出解即可;
(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(1)解:,,,
,
,.
(2)解:原方程可变形为
,
即.
或=0.
所以,.
(3)解:方程两边同时乘,得
.
解这个方程,得.
检验:当时,,是增根,原方程无解.
此题考查了解一元二次方程-因式分解法及公式法,熟练掌握各种解法是解本题的关键.
15、(1)13,13;(2)4,0.8;甲的方差大;(3)从平均数来看甲乙训练成绩一样,从图中可以看中,乙比较稳定,甲波动大.
【解析】
(1)根据图形,分别写出甲、乙两个人这五次的成绩,甲:10,13,12,14,16;乙:13,14,12,12,14;再根据平均数进行计算即可;
(2)由(1)利用和方差的公式进行计算即可
(3)根据方差和平均数的结果进行分析即可.
【详解】
(1)两人得分的平均数:甲=(10+13+12+14+16)=13,
乙=(13+14+12+12+14)=13,
(2)方差:甲=(9+0+1+1+9)=4,
乙=(0+1+1+1+1)=0.8,
甲的方差大。
(3)从平均数来看甲乙训练成绩一样,从图中可以看中,乙比较稳定,甲波动大。
此题考查折线统计图,算术平均数,方差,解题关键在于掌握运算法则
16、(1)1万元 (2)共有5种进货方案 (3)购买A款汽车6辆,B款汽车1辆时对公司更有利
【解析】
分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.
(2)关系式为:公司预计用不多于2万元且不少于11万元的资金购进这两款汽车共15辆.
(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.
详解:(1)设今年5月份A款汽车每辆售价m万元.则:
,
解得:m=1.
经检验,m=1是原方程的根且符合题意.
答:今年5月份A款汽车每辆售价1万元;
(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,根据题意得:
11≤7.5x+6(15﹣x)≤2.
解得:6≤x≤3.
∵x的正整数解为6,7,8,1,3,∴共有5种进货方案;
(3)设总获利为W万元,购进A款汽车x辆,则:
W=(1﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.
当a=0.5时,(2)中所有方案获利相同.
此时,购买A款汽车6辆,B款汽车1辆时对公司更有利.
点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.
17、(1);(2)
【解析】
(1)直接化简二次根式进而计算得出答案;
(2)直接利用二次根式的乘法运算法则计算得出答案.
【详解】
(1)原式
.
(2)原式
.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
18、(1)b2;(2).
【解析】
(1)利用完全平方公式展开,然后再合并同类项即可;
(2)利用分式的基本性质通分,约分,然后再根据同分母的分式的加法法则计算即可.
【详解】
(1)原式= ;
(2)原式=
.
本题主要考查整式的加减及分式的加减运算,掌握去括号,合并同类项的法则和分式的基本性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、①四边相等的四边形是菱形②菱形的对边平行
【解析】
利用作法可判定四边形ABCD为菱形,然后根据菱形的性质得到AD与l平行.
【详解】
由作法得BA=BC=AD=CD,
所以四边形ABCD为菱形,
所以AD∥BC,
故答案为:四条边相等的四边形为菱形,菱形的对边平行.
本题考查了作图-复杂作图、菱形的判定与性质,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
20、75
【解析】
因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,
因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.
所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.
所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,
所以∠BAE=15°,所以∠AEB=90°-15°=75°.
故答案为75.
21、
【解析】
由平行四边形的性质可知:AD∥BC,BC=AD,所以△ADF∽△CEF,所以EF:DF=CE:AD,又CE:AD=CE:BC=1:2,问题得解.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,BC=AD,
∴△ADF∽△CEF,
∴EF:DF=CE:AD,
∵E为BC中点,
∴CE:AD=CE:BC=1:2,
∴= .
故答案为:.
此题考查平行四边形的性质,相似三角形的判定与性质,解题关键在于证明三角形相似
22、9
【解析】
根据题意先证△ABD≌△GBD,得出AB=BG,D为AG中点,再由E为AC中点,根据中位线的性质即可求解.
【详解】
∵BF平分∠ABC,∴∠ABD=∠GBD,
∵AG⊥BF,∴∠BDG=∠BDA,
又BD=BD,∴△ABD≌△GBD
∴BG=AB=4cm,AD=GD,
故D为AG中点,又E为AC中点
∴GC=2DE=5cm,
∴BC=BG+GC=9cm.
此题主要考查线段的长度求解,解题的关键是熟知全等三角形的判定与中位线的性质.
23、8.
【解析】
直接利用菱形的性质结合勾股定理得出菱形的另一条对角线的长,进而利用菱形面积求法得出答案.
【详解】
如图所示:
∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,
∴可得AD=AB,故△ABD是等边三角形,
则AB=AD=4,
故BO=DO=2,
则AO=,
故AC=4,
则菱形ABCD的面积是:×4×4=8.
故答案为:8.
此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(1)
【解析】
(1)先把各二次根式化为最简二次根式,然后合并即可;
(1)利用平方差和完全平方公式计算.
【详解】
解:(1)原式=3﹣+1
=;
(1)原式=()1+1+1﹣[()1﹣1]
=5+1+1﹣5+1
=1+1.
故答案为:(1);(1)1+1.
本题考查了二次根式的混合运算.
25、﹣,﹣.
【解析】
根据分式的减法和除法可以化简题目中的式子,然后在-2< x<中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.
【详解】
原式====,∵-2< x<(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-.
本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.
26、(1)证明见解析;(2)6cm.
【解析】
分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.
(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为2cm,即可求得AE的长.
详解:(1)证明:∵EF⊥CE,
∴∠FEC=90°,
∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,
∴∠AEF=∠ECD.
在Rt△AEF和Rt△DEC中,
∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.
∴△AEF≌△DCE.
(2)解:∵△AEF≌△DCE.
AE=CD.
AD=AE+1.
∵矩形ABCD的周长为2cm,
∴2(AE+AE+1)=2.
解得,AE=6(cm).
答:AE的长为6cm.
点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份安徽蚌埠铁路中学2024年九上数学开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省德州市第七中学数学九上开学统考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份新疆伊宁市第七中学2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了在如图所示的象棋盘,将一副三角尺等内容,欢迎下载使用。