兴安市重点中学2024年数学九上开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知是方程的一个根,则( )
A.B.C.D.
2、(4分)小明3分钟共投篮80次,进了50个球,则小明进球的频率是( ).
A.80 B.50 C.1.6 D.0.625
3、(4分)如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为( )
A.(-,1) B.(-1,) C.(,1) D.(-,-1)
4、(4分)如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )
A.B.C.D.
5、(4分)使用同一种规格的下列地砖,不能进行平面镶嵌的是( )
A.正三角形地砖 B.正四边形地砖 C.正五边形地砖 D.正六边形地砖
6、(4分)若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )
A.0B.2.5C.3 D.5
7、(4分)计算: ( )
A.5B.7C.-5D.-7
8、(4分)如图所示,四边形的对角线和相交于点,下列判断正确的是( )
A.若,则是平行四边形
B.若,则是平行四边形
C.若,,则是平行四边形
D.若,,则是平行四边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为.
当时,正方形ABCD的边长______.
连结OD,当时,______.
10、(4分)已知:函数,,若,则__________(填“”或“”或 “”).
11、(4分)如图,在中,直径,弦于,若,则____
12、(4分)将正比例函数y=﹣2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是_____.
13、(4分)若y=++2,则x+y=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,两点分别是轴和轴正半轴上两个动点,以三点为顶点的矩形的面积为24,反比例函数(为常数且)的图象与矩形的两边分别交于点.
(1)若且点的横坐标为3.
①点的坐标为,点的坐标为(不需写过程,直接写出结果);
②在轴上是否存在点,使的周长最小?若存在,请求出的周长最小值;若不存在,请说明理由.
(2)连接,在点的运动过程中,的面积会发生变化吗?若变化,请说明理由,若不变,请用含的代数式表示出的面积.
15、(8分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
(1)在图1中,“7分”所在扇形的圆心角等于 .
(2)请你将图2的条形统计图补充完整;
(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
16、(8分)点向__________平移2个单位后,所对应的点的坐标是.
17、(10分)如图1,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(2,0), B(0,4).
(1)求直线AB的解析式;
(2)若点M为直线y=mx在第一象限上一点,且△ABM是等腰直角三角形,求m的值.
(3)如图3,过点A(2,0)的直线交y轴负半轴于点P,N点的横坐标为-1,过N点的直线交AP于点M.求的值.
18、(10分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.
(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,
(1)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A1B1C1D1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.
20、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.
21、(4分)如图,矩形ABCD的对角线AC与BD相交于点O,,.若,,则四边形OCED的面积为___.
22、(4分)若关于x的方程-2=会产生增根,则k的值为________
23、(4分)关于x的一元一次不等式组中两个不等式的解集在同一数轴上的表示如图所示,则m的值是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知与成正比例,
(1)y是关于x的一次函数吗?请说明理由;
(2)如果当时,,求关于的表达式.
25、(10分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.
(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个;
(2)求出甲厂的印刷费y甲与证书数量x的函数关系式,并求出其证书印刷单价;
(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元.
26、(12分)如图,菱形的对角线、相交于点,过点作且,连接、,连接交于点.
(1)求证:;
(2)若菱形的边长为2, .求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
把n代入方程得到,再根据所求的代数式的特点即可求解.
【详解】
把n代入方程得到,故
∴3()-7=3-7=-4,
故选D.
此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程的解的定义.
2、D
【解析】
试题分析:频率等于频数除以数据总和,∵小明共投篮81次,进了51个球,∴小明进球的频率=51÷81=1.625,故选D.
考点:频数与频率.
3、A
【解析】
试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为
(-,1)故选A.
考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.
4、A
【解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.
【详解】
设此多边形为n边形,
根据题意得:180(n-2)=1080,
解得:n=8,
∴这个正多边形的每一个外角等于:360°÷8=45°.
故选A.
此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
5、C
【解析】试题解析:A、正三角形的每个内角是60°,能整除360°,能密铺,故A不符合题意;
B、正四边形每个内角是90°,能整除360°,能密铺,故B不符合题意;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,故C符合题意;
D、正六边形每个内角是120°,能整除360°,能密铺,故D不符合题意.
故选C.
6、C
【解析】
解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,
(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.
(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.
(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.
(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.
(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;
综上,可得:a=0、2.5或5,∴a不可能是1.
故选C.
本题考查中位数;算术平均数.
7、A
【解析】
先利用二次根式的性质进行化简,然后再进行减法运算即可.
【详解】
=6-1
=5,
故选A.
本题考查了二次根式的化简,熟练掌握是解题的关键.
8、D
【解析】
若AO=OC,BO=OD,则四边形的对角线互相平分,根据平行四边形的判定定理可知,该四边形是平行四边形.
【详解】
∵AO=OC,BO=OD,
∴四边形的对角线互相平分
所以D能判定ABCD是平行四边形.
故选D.
此题考查平行四边形的判定,解题关键在于掌握判定定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、; 4或6
【解析】
(4)在RtAOC中,利用勾股定理求出AC的长度,然后再求得正方形的边长即可;
(4)先求得OD与y轴的夹角为45〬,然后依据OD的长,可求得点D的坐标,过D作DM⊥y轴,DN⊥x轴,接下来,再证明△DNA≌△DMC,从而可得到CM=AM,从而可得到点A的坐标.
【详解】
解:(4)当n=4时,OA=4,
在Rt△COA中,AC4=CO4+AO4=4.
∵ABCD为正方形,
∴AB=CB.
∴AC4=AB4+CB4=4AB4=4,
∴AB= .
故答案为.
(4)如图所示:过点D作DM⊥y轴,DN⊥x轴.
∵ABCD为正方形,
∴A、B、C、D四点共圆,∠DAC=45°.
又∵∠COA=90°,
∴点O也在这个圆上,
∴∠COD=∠CAD=45°.
又∵OD= ,
∴DN=DM=4.
∴D(-4,4).
在Rt△DNA和Rt△DMC中,DC=AD,DM=DN,
∴△DNA≌△DMC.
∴CM=AN=OC-MO=3.
∵D(-4,4),
∴A(4,0).
∴n=4.
如下图所示:过点D作DM⊥y轴,DN⊥x轴.
∵ABCD为正方形,
∴A、B、C、D四点共圆,∠DAC=45°.
又∵∠COA=90°,
∴点O也在这个圆上,
∴∠AOD=∠ACD=45°.
又∵OD= ,
∴DN=DM=4.
∴D(4,-4).
同理:△DNA≌△DMC,则AN=CM=5.
∴OA=ON+AN=4+5=6.
∴A(6,0).
∴n=6.
综上所述,n的值为4或6.
故答案为4或6.
本题考核知识点:正方形性质、全等三角形性质,圆等. 解题关键点:熟记相关知识点.
10、<
【解析】
联立方程组,求出方程组的解,根据方程组的解以及函数的图象进行判断即可得解.
【详解】
根据题意联立方程组得,
解得,,
画函数图象得,
所以,当,则<.
故答案为:<.
本题考查了一次函数图象的性质与特征,求出两直线的交点坐标是解决此题的关键.
11、
【解析】
根据圆周角定理求出∠COB,根据正弦的概念求出CE,根据垂径定理解答即可.
【详解】
由圆周角定理得,∠COB=2∠A=60°,
∴CE=OC•sin∠COE=2×=,
∵AE⊥CD,
∴CD=2CE=2,
故答案为:2.
本题考查的是垂径定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.
12、y=-2x+1
【解析】
根据上下平移时只需让b的值加减即可,进而得出答案即可.
解:原直线的k= -2,b=0;向上平移1个单位得到了新直线,
那么新直线的k= -2,b=0+1=1.
故新直线的解析式为:y= -2x+1.
故答案为y= -2x+1.
“点睛”此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.
13、5
【解析】
分析:根据被开方数大于等于0列式求出x,再求出y,然后相加计算即可得解.
详解:由题意得,且 ,
解得且
所以,x=3,
y=2,
所以,x+y=3+2=5.
故答案为5.
点睛:考查二次根式有意义的条件,二次根式有意义的条件是:被开方数大于等于零.
三、解答题(本大题共5个小题,共48分)
14、(1)①点坐标为,点坐标为;②存在,周长;
(2)不变,的面积为
【解析】
(1)①求出点E的坐标,得出C点的纵坐标,根据面积为24即可求出C的坐标,得出F点横坐标即可求解;
②作点E关于x轴的对称点G,连接GF,与x轴的交点为p,此时的周长最小
(2)先算出三角形与三角形的面积,再求出三角形的面积即可.
【详解】
(1)①点坐标为,点坐标为;
②作点E关于x轴的对称点G,连接GF,求与x轴的交点为p,此时的周长最小
由①得EF=
由对称可得EP=PH,
由 H(3,-4) F(6,2)可得HF=3
△PEF=EP+PF+EF=FH+EF=
(2)不变,求出三角形与三角形的面积为
求出三角形的面积为
求出三角形的面积为
设E位(a, ),则S△AEO=,同理可得S△AFB=,
∵矩形的面积为24
F(,),C(,)
S△CEF=
S=24--k=.
本题考查的是函数与矩形的综合运用,熟练掌握三角形和对称是解题的关键.
15、(1)144;(2)条形统计图补充见解析;(3)平均分为8.3,中位数为7,从平均数看,两队成绩一样,从中位数看,乙队成绩好.
【解析】
(1)认真分析题意,观察扇形统计图,根据扇形统计图的圆心角之和为360°和所给的角度即可得到答案;
(2)结合扇形统计图和条形统计图,得出乙校参加的人数,即可得8分的人数,完成条形统计图即可.
(3)结合第(2)问的答案,可以补充统计表,接下来结合平均数、中位数的概念,即可求出甲校的平均分以及中位数,通过与乙校进行比较,即可得到答案.
【详解】
(1)观察扇形统计图,可得
“7分”所在扇形图的圆心角等于360°-(90°+54°+72°)=144°
(2)(人)
20-8-4-5=3(人)
乙校得8分的人数为3,补充统计图如图所示
(3)由甲乙两校参加的人数相等,可得
甲校得9分的人数为20-(11+8)=1
故甲校成绩统计表中,得9分的对应人数为1.
结合平均数的概念,可得
甲校的平均分为 =8.3(分)
结合中位数的概念,可得
甲校的中位数为7
从平均分、中位数的角度分析,甲乙两校的平均分相同,乙校的中位数>甲校的中位数,
可知乙校的成绩好.
此题考查加权平均数,中位数,条形统计图,解题关键在于看懂图中数据
16、左
【解析】
找到横纵坐标的变化情况,根据坐标的平移变换进行分析即可.
【详解】
解:纵坐标没有变化,
横坐标的变化为:,说明向左平移了2个单位长度.
故答案为:左.
本题考查了坐标与图形变化-平移,用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.
17、(2)y=﹣2x+2;(2)m的值是或或2;(3)2.
【解析】
(2)设直线AB的解析式是y=kx+b,代入得到方程组,求出即可;
(2)当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,证△BMN≌△ABO(AAS),求出M的坐标即可;②当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,同法求出M的坐标;③当AM⊥BM,且AM=BM时,过M作MN⊥x轴于N,MH⊥y轴于H,证△BHM≌△AMN,求出M的坐标即可.
(3)设NM与x轴的交点为H,分别过M、H作x轴的垂线垂足为G,HD交MP于D点,求出H、G的坐标,证△AMG≌△ADH,△AMG≌△ADH≌△DPC≌△NPC,推出PN=PD=AD=AM代入即可求出答案.
【详解】
(2) ∵A(2,0),B(0,2),
设直线AB的解析式是y=kx+b,
代入得:,
解得:k=﹣2,b=2,
∴直线AB的解析式是y=﹣2x+2.
(2)如图,分三种情况:
①如图①,当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,
∵BM⊥BA,MN⊥y轴,OB⊥OA,
∴∠MBA=∠MNB=∠BOA=90°,
∴∠NBM+∠NMB=90°,∠ABO+∠NBM=90°,
∴∠ABO=∠NMB,
在△BMN和△ABO中
,
∴△BMN≌△ABO(AAS),
MN=OB=2,BN=OA=2,
∴ON=2+2=6,
∴M的坐标为(2,6 ),
代入y=mx得:m=,
②如图②,当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,
易知△BOA≌△ANM(AAS),
同理求出M的坐标为(6,2),
代入y=mx得:m=,
③如图③,
当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,
∴四边形ONMH为矩形,
易知△BHM≌△AMN,
∴MN=MH,
设M(x2,x2)代入y=mx得:x2=m x2,
∴m=2,
答:m的值是或或2.
(3)如图3,设NM与x轴的交点为H,过M作MG⊥x轴于G,过H作HD⊥x轴,
HD交MP于D点,
即:∠MGA=∠DHA=900,连接ND,ND 交y轴于C点
由与x轴交于H点,∴H(2,0),
由与y=kx﹣2k交于M点,∴M(3,k),
而A(2,0),
∴A为HG的中点,AG=AH,∠MAG=∠DAH
∴△AMG≌△ADH(ASA),∴AM=AD
又因为N点的横坐标为﹣2,且在上,
∴N(-2,﹣k),同理D(2,﹣k)
∴N关于y轴对称点为D
∴PC是ND的垂直平分线∴PN=PD, CD=NC=HA=2,∠DCP=∠DHA=900,ND平行于X轴
∴∠CDP=∠HAD
∴△ADH≌△DPC ∴AD= PD
∴PN=PD=AD=AM,
∴.
此题是一次函数综合题,主要考查对一次函数图象上点的坐标特征,等腰直角三角形性质,用待定系数法求正比例函数的解析式,全等三角形的性质和判定,二次根式的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.
18、(1)图略(1)向右平移10个单位,再向下平移一个单位.(答案不唯一)
【解析】
(1)D不变,以D为旋转中心,顺时针旋转90°得到关键点A,C,B的对应点即可;
(1)最简单的是以C′D′的为对称轴得到的图形,应看先向右平移几个单位,向下平移几
个单位.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(﹣4,3).
【解析】
求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.
【详解】
解:∵点E(﹣8,0)在直线y=kx+6上,
∴﹣8k+6=0,
∴k=,
∴y=x+6,
∴P(x, x+6),
由题意:×6×(x+6)=1,
∴x=﹣4,
∴P(﹣4,3),
故答案为(﹣4,3).
本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.
20、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.
【详解】
解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
∴CD=BD,
∵BC=BD,
∴CD=BC=BD,
∴△BCD是等边三角形,
∴∠B=60°,
∴∠A=1°.
故答案为:1.
考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.
21、
【解析】
连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到OCED为平行四边形,根据邻边相等的平行四边形为菱形得到四边形OCED为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.
【详解】
解:连接OE,与DC交于点F,
∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,AB=CD,
∵OD∥CE,OC∥DE,
∴四边形ODEC为平行四边形,
∵OD=OC,
∴四边形OCED为菱形,
∴DF=CF,OF=EF,DC⊥OE,
∵DE∥OA,且DE=OA,
∴四边形ADEO为平行四边形,
∵AD=,AB=2,
∴OE=,CD=2,
则S菱形OCED=OE•DC=××2=.
故答案为:.
本题考查矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解题的关键.
22、
【解析】
根据方程有增根可得x=3,把-2=去分母后,再把x=3代入即可求出k的值.
【详解】
∵关于x的方程-2=会产生增根,
∴x-3=0,
∴x=3.
把-2=的两边都乘以x-3得,
x-2(x-3)=-k,
把x=3代入,得
3=-k,
∴k=-3.
故答案为:-3.
本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
23、m=1
【解析】
解不等式,表达出解集,根据数轴得出即可.
【详解】
解:不等式,
解不等式①得:
解不等式②得:,
由数轴可知,,解得m=1,
故答案为:m=1.
本题考查了根据不等式的解集求不等式中的参数问题,解题的关键是正确解出不等式组,根据解集表达出含参数的方程.
二、解答题(本大题共3个小题,共30分)
24、(1)y是x的一次函数,理由见解析;(2)
【解析】
试题分析:(1)根据题意设y-1=k(2x+3),整理得y=2kx+3k+1,然后根据一次函数的定义判断y是否是关于x的一次函数;(2)把x=-,y=0代入求出k即可得到y与x的函数关系.
试题解析:(1)依题意设,
所以,
故y是x的一次函数;
(2)把x=−,y=0代入得
−k+3k+1=0,解得k=3,
∴y关于x的函数表达式为y=6x+10.
25、(1)1;1.5(2)y=0.5x+1(3)选择乙厂节省费用,节省费用500元.
【解析】
(1)根据纵轴图象判断即可,用2到6千个时的费用除以证件个数计算即可得解;
(2)设甲厂的印刷费y甲与证书数量x的函数关系式为y=kx+b,利用待定系数法解答即可;
(3)用待定系数法求出乙厂x>2时的函数解析式,再求出x=8时的函数值,再求出甲厂印制1个的费用,然后求出8千个的费用,比较即可得解.
【详解】
解:(1)(1)由图可知,甲厂的制版费为1千元; 当x≤2(千个)时,乙厂证书印刷单价是3÷2=1.5元/个;
故答案为1;1.5;
(2)解:设甲厂的印刷费y甲与证书数量x的函数关系式为y=kx+b,
可得: ,解得: ,
所以甲厂的印刷费y甲与证书数量x的函数关系式为:y=0.5x+1;
(3)解:设乙厂x>2时的函数解析式为y=k2x+b2 ,
则 ,解得 ,
∴y=0.25x+2.5,
x=8时,y=0.25×8+2.5=4.5千元,
甲厂印制1个证件的费用为:(4﹣1)÷6=0.5元,
印制8千个的费用为0.5×8+1=4+1=5千元,
5﹣4.5=0.5千元=500元,
所以,选择乙厂节省费用,节省费用500元.
本题主要考查了一次函数和一元一次不等式的实际应用,是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.
26、(1)证明见解析(1)
【解析】
试题分析:(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;
(1)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
(1)证明:在菱形ABCD中,OC=AC.
∴DE=OC.
∵DE∥AC,
∴四边形OCED是平行四边形.
∵AC⊥BD,
∴平行四边形OCED是矩形.
∴OE=CD.
(1)在菱形ABCD中,∠ABC=60°,
∴AC=AB=1.
∴在矩形OCED中,
CE=OD=.
在Rt△ACE中,
AE=.
点睛:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
宁德市重点中学2024年九上数学开学达标检测试题【含答案】: 这是一份宁德市重点中学2024年九上数学开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
崇左市重点中学2024-2025学年数学九上开学达标检测试题【含答案】: 这是一份崇左市重点中学2024-2025学年数学九上开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届菏泽市重点中学数学九上开学达标检测试题【含答案】: 这是一份2025届菏泽市重点中学数学九上开学达标检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。