兴安市重点中学2025届九年级数学第一学期开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,将△ABC 绕点 A 按顺时针方向旋转 120°得到△ADE,点 B 的对应点是点 E,点 C 的对应点是点 D,若∠BAC=35°,则∠CAE 的度数为( )
A.90°B.75°C.65°D.85°
2、(4分)不等式6﹣4x≥3x﹣8的非负整数解为( )
A.2个B.3个C.4个D.5个
3、(4分)一次函数的图像经过( )
A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限
4、(4分)如图,在△中,、是△的中线,与相交于点,点、分别是、的中点,连结.若=6cm,=8cm,则四边形DEFG的周长是( )
A.14cmB.18 cm
C.24cmD.28cm
5、(4分)下列四个不等式组中,解集在数轴上表示如图所示的是( )
A.B.C.D.
6、(4分)下列二次概式中,最简二次根式是( )
A.B.C.D.
7、(4分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图1.两次旋转的角度分别为( )
A.45°,90°B.90°,45°C.60°,30°D.30°,60°
8、(4分)下列函数中是一次函数的为( )
A.y=8x2B.y=x+1C.y=D.y=
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中有两点A(6,0),B(0,3),如果点C在x轴上(C与A不重合),当点C的坐标为 时,△BOC与△AOB相似.
10、(4分)如图,为的中位线,点在上,且为直角,若,,则的长为__________.
11、(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于_____.
12、(4分)如图,一束光线从y轴上的点A(0,1)出发,经过x轴上的点C反射后经过点B(6,2),则光线从A点到B点经过的路线长度为 .
13、(4分)已知三角形两边长分别为2,3,那么第三边的长可以是___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(1)2﹣6+3;
(2)(﹣)(+)+(2﹣3)2;
用指定方法解下列一元二次方程:
(3)x2﹣36=0(直接开平方法);
(4)x2﹣4x=2(配方法);
(5)2x2﹣5x+1=0(公式法);
(6)(x+1)2+8(x+1)+16=0(因式分解法)
15、(8分)在如图所示的平面直角坐标系内画一次函数y1=-x+4和y2=2x-5的图象,根据图象写出:
(1)方程-x+4=2x-5的解;
(2)当x取何值时,y1>y2?当x取何值时,y1>0且y2<0?
16、(8分)如图所示,在边长为1个单位长度的小正方形组成的网格中,的顶点A、B、C在格点(网格线的交点)上.
(1)将绕点B逆时针旋转,得到,画出;
(2)以点A为位似中心放大,得到,使放大前后的三角形面积之比为1:4,请你在网格内画出.
17、(10分)某中学八⑴班、⑵班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:
(1)根据上图填写下表:
(2)根据两班成绩的平均数和中位数,分析哪班成绩较好?
(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.
18、(10分)如图,在▱ABCD中,对角线AC与BD相交于点O,点M,N在对角线AC上,且AM=CN,求证:BM∥DN.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数如表,则该周PM2.5指数的众数和中位数分别是________
20、(4分)计算:﹣=__.
21、(4分)分解因式___________
22、(4分)写一个二次项系数为1的一元二次方程,使得两根分别是﹣2和1._____.
23、(4分)如图,在平面直角坐标系中,的顶点在轴正半轴上,点在反比例函数的图象上.若是的中线,则的面积为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1 200元,那每件降价多少元?
25、(10分)如图,平行四边形中,点分别在上,且与相交于点,求证:.
26、(12分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.
【详解】
∵将△ABC绕点A按顺时针方向旋转120°得到△ADE
∴∠BAE=120°且∠BAC=35°
∴∠CAE=85°
故选D.
本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.
2、B
【解析】
移项得,﹣4x﹣3x≥﹣8﹣6,
合并同类项得,﹣7x≥﹣14,
系数化为1得,x≤1.
故其非负整数解为:0,1,1,共3个.
故选B.
3、D
【解析】
根据一次函数的性质k<0,则可判断出函数图象y随x的增大而减小,再根据b>0,则函数图象一定与y轴正半轴相交,即可得到答案.
【详解】
解:∵一次函数y=-2x+3中,k=-2<0,则函数图象y随x的增大而减小,
b=3>0,则函数图象一定与y轴正半轴相交,
∴一次函数y=-2x+3的图象经过第一、二、四象限.
故选:D.
本题考查了一次函数的图象,一次函数y=kx+b的图象经过的象限由k、b的值共同决定,分如下四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象.
4、A
【解析】
试题分析:∵点F、G分别是BO、CO的中点,BC = 8cm
∴FG=BC=4 cm
∵BD、CE是△ABC的中线
∴DE=BC=4 cm
∵点F、G、E、D分别是BO、CO、AB、AC的中点,AO = 6cm
∴EF=AO=3 cm,DG=AO=3 cm
∴四边形DEFG的周长="EF+FG+DG+DE=14" cm
故选A
考点:1、三角形的中位线;2、四边形的周长
5、D
【解析】
此题涉及的知识点是不等式组的表示方法,根据规律可得答案.
【详解】
由解集在数轴上的表示可知,该不等式组为,
故选D.
本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.
6、C
【解析】
根据最简二次根式的定义即可求解.
【详解】
A. =2,故错误;
B. =根号里含有小数,故错误;
C. 为最简二次根式,正确;
D. =2,故错误;
故选C.
此题主要考查最简二次根式定义,解题的关键是熟知最简二次根式的特点.
7、A
【解析】
本题考查了旋转的性质、等腰直角三角形的性质. 图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图1中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.
解:根据图1可知,
∵△ABC和△ADE是等腰直角三角形,
∴∠CAB=45°,
即△ABC绕点A逆时针旋转45°可到△ADE;
如图,
∵△ABC和△ADE是等腰直角三角形,
∴∠DAE=∠CAB=45°,
∴∠FAB=∠DAE+∠CAB=90°,
即图1可以逆时针连续旋转90°得到图1.
故选A.
8、B
【解析】
根据一次函数的定义逐一分析即可.
【详解】
解:A、自变量次数不为1,故不为一次函数;
B、是一次函数;
C、为反比例函数;
D、分母中含有未知数不是一次函数.
所以B选项是正确的.
本土主要考查一次函数的定义:一次函数的定义条件是函数形式为y=kx+b(k、b为常数,k≠0,自变量次数为1).
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(﹣1.5,0),(1.5,0),(﹣6,0)
【解析】
本题可从两个三角形相似入手,根据C点在x轴上得知C点纵坐标为0,讨论OC与OA对应以及OC与OB对应的情况,分别讨论即可.
【详解】
解:∵点C在x轴上,
∴∠BOC=90°,两个三角形相似时,应该与∠BOA=90°对应,
若OC与OA对应,则OC=OA=6,C(﹣6,0);
若OC与OB对应,则OC=1.5,C(﹣1.5,0)或者(1.5,0).
∴C点坐标为:(﹣1.5,0),(1.5,0),(﹣6,0).
故答案为(﹣1.5,0),(1.5,0),(﹣6,0).
考点:相似三角形的判定;坐标与图形性质.
10、1
【解析】
根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.
【详解】
∵DE为△ABC的中位线,
∴DE=BC=4(cm),
∵∠AFC为直角,E为AC的中点,
∴FE=AC=3(cm),
∴DF=DE−FE=1(cm),
故答案为:1cm.
此题考查三角形中位线定理,解题关键在于掌握其性质定义.
11、1.
【解析】
利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可.
【详解】
设经过(1,4),(2,7)两点的直线解析式为y=kx+b,
∴,
解得,
∴y=1x+1,
将点(a,10)代入解析式,则a=1;
故答案为:1.
此题考查待定系数法求一次函数的解析式,正确理解题意,利用一次函数解析式确定点的横坐标a的值.
12、3
【解析】
解:如图,过点B作BD⊥x轴于点D,根据已知条件易得△AOC∽△BDC,
根据相似三角形对应边的比相等可得,
又因点A(0,1),点B(6,2),
可得0A=1,BD=2,OD=6,
代入即可求得OC=2,CD=4,
由勾股定理求得AC=,BD=2,
即可得光线从A点到B点经过的路线长度为3.
考点:相似三角形的应用;坐标与图形性质.
13、2(答案不唯一).
【解析】
根据三角形的三边关系可得3-2<第三边长<3+2,再解可得第三边的范围,然后可得答案.
【详解】
解:设第三边长为x,由题意得:
3-2<x<3+2,
解得:1<x<1.
故答案为:2(答案不唯一).
此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.
三、解答题(本大题共5个小题,共48分)
14、(1)14;(2)31﹣12;(3)x1=﹣6,x2=6;(4)x1=2﹣,x2=2+;(1)x1=,x2=;(6)x1=x2=﹣1.
【解析】
(1)先把各二次根式化为最简二次根式,然后合并同类二次根式即可;
(2)利用平方差公式和完全平方公式计算;
(3)直接开平方法求解;
(4)配方法求解可得;
(1)公式法求解即可;
(6)因式分解法解之可得.
【详解】
解:(1)2﹣6+3
=4﹣6×+3×4
=2+12
=14;
(2)(﹣)(+)+(2﹣3)2
=6﹣1+12+18﹣12
=31﹣12.
(3)x2=36,
∴x=±6,
即x1=﹣6,x2=6;
(4)x2﹣4x+4=2+4,
即(x﹣2)2=6,
∴x﹣2= ,
∴x1=2﹣ ,x2=2+ ;
(1)∵a=2,b=﹣1,c=1,
∴b2﹣4ac=21﹣8=17>0,
∴x= ,
即x1= ,x2= ;
(6)(x+1)2+8(x+1)+16=0
(x+1+4)2=0,
即(x+1)2=0,
∴x+1=0,
即x1=x2=﹣1.
故答案为:(1)14;(2)31﹣12;(3)x1=﹣6,x2=6;(4)x1=2﹣,x2=2+;(1)x1=,x2=;(6)x1=x2=﹣1.
本题考查二次根式的混合运算,解一元二次方程,根据不同的方程选择合适的方法是解题的关键.
15、(1)x=3.(2)当x<3时,y1>y2.当x<2.5时,y1>0且y2<0.
【解析】
分析:(1)根据题意画出一次函数和的图象,根据两图象的交点即可得出x的值;
(2)根据函数图象可直接得出结论.
详解:(1)∵一次函数和的图象相交于点(3,1),
∴方程的解为x=3;
(2)由图象可知,
当时, 当时,且
点睛:考查一次函数与一元一次不等式,一次函数与一元一次方程,注意数形结合思想在解题中的应用.
16、 (1)见解析;(2)见解析
【解析】
(1)分别作出点A、C绕点B逆时针旋转90°所得对应点,再顺次连接即可得;
(2)分别作出点B、C变换后的对应点,再顺次连接即可得.
【详解】
(1)如图所示,△A1BC1即为所求.
(2)如图所示,△AB2C2即为所求.
考查作图-旋转变换、位似变换,解题的关键是掌握旋转变换和位似变换的定义与性质.
17、(1)85,1;(2)八⑴班的成绩较好;(3)八⑵班实力更强些,理由见解析
【解析】
(1)根据中位数和众数的定义填空.
(2)根据平均数和中位数比较两个班的成绩.
(3)比较每班前两名选手的成绩即可.
【详解】
解:(1)由条形图数据可知:中位数填85,众数填1.
故答案为:85,1;
(2)因两班平均数相同,
但八(1)班的中位数高,
所以八(1)班的成绩较好.
(3)如果每班各选2名选手参加决赛,我认为八(2)班实力更强些.因为,虽然两班的平均数相同,但在前两名的高分区中八(2)班的成绩为1分和1分,而八(1)班的成绩为1分和85分.
本题考查了运用平均数,中位数与众数解决实际问题的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.
18、证明见解析
【解析】
试题分析:由平行四边形的性质得出OA=OC,OB=OD,再证出OM=ON,由SAS证明△BOM≌△DON,得出对应角相等∠OBM=∠ODN,再由内错角相等,两直线平行,即可得出结论.
试题解析:证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AM=CN,∴OM=ON,
在△BOM和△DON中,
∴△BOM≌△DON(SAS),
∴∠OBM=∠ODN,
∴BM∥DN.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、150,1
【解析】
根据众数和中位数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:150,150,150,1,1,160,165,
则众数为:150,
中位数为:1.
故答案为:150,1
此题考查中位数,众数,解题关键在于掌握其概念
20、
【解析】
分析:先将二次根式化为最简,然后合并同类二次根式即可.
详解:原式=3-2
=.
故答案为.
点睛:本题考查了二次根式的加减运算,解答本题得关键是掌握二次根式的化简及同类二次根式的合并.
21、
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
原式=2x(y2+2y+1)=2x(y+1)2,
故答案为2x(y+1)2
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
22、 (x+2)(x-1)=0
【解析】
根据因式分解法解一元二次方程的方法,可得方程为(x+2)(x-1)=0.
23、6
【解析】
过点作轴于点E,过点作轴于点D,设,得到点B的坐标,根据中点的性质,得到OA和BD的长度,然后根据三角形面积公式求解即可.
【详解】
解:过点作轴于点,过点作轴于点.
设,
∵为的中线,点A在x轴上,
∴点C为AB的中点,
∴点B的纵坐标为,
∴,解得:,
,
∴,
∵BD∥CE,点C是中点,
∴点E是AD的中点,
∴,
∴,
∵,
故答案为:6.
本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,三角形中线的定义,以及三角形中位线的性质,求得BD,OA的长是解题关键.
二、解答题(本大题共3个小题,共30分)
24、每件童装应降价1元.
【解析】
设每件童装应降价x元,原来平均每天可售出1件,每件盈利40元,后来每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利110元,由此即可列出方程(40-x)(1+2x)=110,解方程就可以求出应降价多少元.
【详解】
如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.
设每件童装应降价x元,
依题意得(40-x)(1+2x)=110,
整理得x2-30x+10=0,
解之得x1=10,x2=1,
因要减少库存,故x=1.
答:每件童装应降价1元.
首先找到关键描述语,找到等量关系,然后准确的列出方程是解决问题的关键.最后要判断所求的解是否符合题意,舍去不合题意的解.
25、见解析
【解析】
连接AF,CE,由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,又由BE=DF,证得AE=CF,即可证得四边形AECF是平行四边形,从而证得结论.
【详解】
连接AF,CE,
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵BE=DF,
∴AB-BE=CD-DF,
∴AE=CF,
∴四边形AECF是平行四边形,
∴PA=PC.
本题考查了平行四边形的性质与判定.注意准确作出辅助线,证得四边形AECF是平行四边形是解此题的关键.
26、解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形.
∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.
∴∠ADB=90°.
∴平行四边形AEBD是矩形.
(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:
∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.
∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.
【解析】
试题分析:(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.
(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形,
∵AB=AC,AD是∠BAC的角平分线,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四边形AEBD是矩形;
(2)当∠BAC=90°时,
理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,
∴AD=BD=CD,
∵由(1)得四边形AEBD是矩形,
∴矩形AEBD是正方形.
题号
一
二
三
四
五
总分
得分
平均数
中位数
众数
八(1)班
85
85
八(2)班
85
80
PM2.5指数
150
155
160
165
天 数
3
2
1
1
武威市重点中学2025届数学九年级第一学期开学达标测试试题【含答案】: 这是一份武威市重点中学2025届数学九年级第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
朔州市重点中学2024年数学九年级第一学期开学达标检测试题【含答案】: 这是一份朔州市重点中学2024年数学九年级第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
辽源市重点中学2024年数学九年级第一学期开学达标测试试题【含答案】: 这是一份辽源市重点中学2024年数学九年级第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。