云南省牟定县茅阳中学2024年九上数学开学教学质量检测模拟试题【含答案】
展开
这是一份云南省牟定县茅阳中学2024年九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式中,正确的是( )
A.=﹣8B.﹣=﹣8C.=±8D.=±8
2、(4分)实数在数轴上对应点如图所示,则化简 的结果是( )
A.B.C.D.
3、(4分)下列代数式变形正确的是( )
A.B.
C.D.
4、(4分)如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20,那么△DEF的周长是( )
A.20B.15C.10D.5
5、(4分)某校艺术节的乒乓球比赛中,小东同学顺利进入决赛.有同学预测“小东夺冠的可能性是80%”,则对该同学的说法理解最合理的是( )
A.小东夺冠的可能性较大B.如果小东和他的对手比赛10局,他一定会赢8局
C.小东夺冠的可能性较小D.小东肯定会赢
6、(4分)函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是( )
A.B.
C.D.
7、(4分)下列各组数不能作为直角三角形三边长的是( )
A.3,4,5B.,,C.0.3,0.4,0.5D.30,40,50
8、(4分)下列选项中的图形,不属于中心对称图形的是( )
A. B. C. D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某种型号的空调经过两次降价,价格比原来下降了36%,则平均每次下降的百分数是_____%.
10、(4分)若二次根式有意义,则的取值范围是________.
11、(4分)如图,在中,,点、、分别为、、的中点.若,则的长为_____________.
12、(4分)计算的结果是 .
13、(4分)不等式2x+8≥3(x+2)的解集为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某报社为了了解市民“获取新闻的最主要途径”,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.
请根据图表信息解答下列问题:
(1)统计表中的m= ,n= ,并请补全条形统计图;
(2)扇形统计图中“D”所对应的圆心角的度数是 ;
(3)若该市约有120万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数.
15、(8分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
16、(8分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.
(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;
②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.
17、(10分)如图,在中,.
用圆规和直尺在AC上作点P,使点P到A、B的距离相等保留作图痕迹,不写作法和证明
当满足的点P到AB、BC的距离相等时,求的度数.
18、(10分)解下列各题:
(1)分解因式:;
(2)已知,,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)菱形ABCD的对角线cm,,则其面积等于______.
20、(4分)如图,已知在中,,点是延长线上的一点,,点是上一点,,连接,、分别是、的中点,则__________.
21、(4分)如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是______.
22、(4分)二次根式在实数范围内有意义,x的取值范围是_____.
23、(4分)如图,正方形中,点在上,交、于点、,点、分别为、的中点,连接、,若,,则______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.
求证:四边形ABCD为平行四边形.
25、(10分)已知,如图甲,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于D.
(1)试说明:∠EFD=(∠C﹣∠B);
(2)当F在AE的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.
26、(12分) “校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度,进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有______名;
(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据二次根式的性质逐项计算即可.
【详解】
解:A、=8,故此选项错误;
B、﹣=﹣8,故此选项错正确;
C、=8,故此选项错误;
D、=8,故此选项错误;
故选:B.
题考查了二次根式的性质,熟练掌握是解答本题的关键.
2、B
【解析】
分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.
详解:由数轴可得:a<0<b,a- b<0,
∴=|b|+| a-b|-| a|,
=b-(a-b)+a,
=b-a+b+a,
=2b.
故选B.
点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.
3、D
【解析】
利用分式的基本性质对四个选项一一进行恒等变形,即可得出正确答案.
【详解】
解:A.,故本选项变形错误;
B. ,故本选项变形错误;
C.,故本选项变形错误;
D.,故本选项变形正确,
故选D.
本题考查了分式的基本性质.熟练应用分式的基本性质对分式进行约分和通分是解题的关键.
4、C
【解析】
试题分析::∵D、E分别是△ABC的边BC、AB的中点,
∴DE=AC,同理 EF=BC,DF=AB,∴C△DEF=DE+EF+DF=(AC+BC+AB)=×20=1.
故选C.
考点:三角形的中位线定理
5、A
【解析】
根据题意主要是对可能性的判断,注意可能性不是一定.
【详解】
根据题意可得小东夺冠的可能性为80%,B选项错误,因为不是一定赢8局,而是可能赢8局;C选项错误,因为小东夺冠的可能性大于50%,应该是可能性较大;D选项错误,因为可能性只有80%,不能肯定能赢.故选A
本题主要考查同学们对概率的理解,概率是一件事发生的可能性,有可能发生,也有可能不发生.
6、D
【解析】
当反比例函数图象分布在第一、三象限,则a>0,然后根据一次函数图象与系数的关系对A、B进行判断;当反比例函数图象分布在第二、四象限,则a<0,然后根据一次函数图象与系数的关系对C、D进行判断.
【详解】
解:A、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以A选项错误;
B、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以B选项错误;
C、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以C选项错误;
D、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以D选项正确.
故选:D.
本题考查了反比例函数图象:反比例函数y=的图象为双曲线,当k>0,图象分布在第一、三象限;当k<0,图象分布在第二、四象限.也考查了一次函数图象.
7、B
【解析】
选项A,,三角形是直角三角形; 选项B,,三角形不是直角三角形;选项C,,三角形是直角三角形;
选项D,,三角形是直角三角形;故选B .
8、B
【解析】
根据中心对称图形特点分别分析判断,中心对称图形绕一个点旋转180°后图形仍和原来图形重合.
【详解】
解:A、属于中心对称图形,不符合题意;
B、不是中心对称图形,符合题意;
C、是中心对称图形,不符合题意;
D、是中心对称图形,不符合题意.
故答案为:B
本题考查的中心对称图形,由其特点进行判断是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20%.
【解析】
增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题求解.设平均每次下降的百分数是x,则根据题意可列方程(1-x)2=1-36%,解方程即可求解.注意根据实际意义进行值的取舍.
【详解】
设平均每次下降的百分数是x,根据题意得(1-x)2=1-36%
解方程得x1=0.2=20%,x2=1.8(舍去)
所以平均每次下降的百分数是20%.
故答案是:20%.
考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).
10、
【解析】
根据二次根式有意义的条件:被开方数≥0,列不等式即可.
【详解】
根据二次根式有意义的条件:
解得:
故答案为
此题考查的是二次根式有意义的条件,解决此题的关键是根据二次根式有意义的条件:被开方数≥0,列不等式.
11、1
【解析】
已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.
【详解】
解:∵△ABC是直角三角形,CD是斜边的中线,
∴AB=2CD
又∵EF是△ABC的中位线,
∴AB=2CD=2×1=10cm,
故答案为:1.
此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.
12、1.
【解析】
.
故答案为1.
13、x≤2
【解析】
根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.
【详解】
去括号,得:2x+8≥3x+6,
移项,得:2x-3x≥6-8,
合并同类项,得:-x≥-2,
系数化为1,得:x≤2,
故答案为x≤2
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
三、解答题(本大题共5个小题,共48分)
14、 (1) 400,100;(2) 36°;(3) 81.6万人
【解析】
(1)由等级C的人数除以占的百分比,得出调查总人数即可,进而确定出等级B与等级D的人数,进而求出m与n的值;
(2)由D占的百分比,乘以360即可得到结果;
(3)根据题意列式计算即可得到结论.
【详解】
解:(1)m=140÷14%×40%=400;n=140÷14%﹣280﹣400﹣140﹣80=100;
条形统计图如下:
故答案为:400,100;
(2)扇形统计图中“D”所对应的圆心角的度数是 ×360°=36°;
故答案为:36°;
(3) ×120=81.6万人,
答:其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数81.6万人
此题考查统计表,扇形统计图,条形统计图,解题关键在于看懂图中数据
15、(1)见解析;
(2)见解析.
【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;
(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.
【详解】
(1)证明:∵AE∥BC,DE∥AB ,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上的中线,
∴BD=DC,
∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形.
本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.
16、(1)证明见解析;(2)①菱形BFEP的边长为cm;②点E在边AD上移动的最大距离为2cm.
【解析】
(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;
(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=4cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=即可;
②当点Q与点C重合时,点E离点A最近,由①知,此时AE=4cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.
【详解】
(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,
∴点B与点E关于PQ对称,
∴PB=PE,BF=EF,∠BPF=∠EPF,
又∵EF∥AB,
∴∠BPF=∠EFP,
∴∠EPF=∠EFP,
∴EP=EF,
∴BP=BF=EF=EP,
∴四边形BFEP为菱形;
(2)①∵四边形ABCD是矩形,
∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,
∵点B与点E关于PQ对称,
∴CE=BC=5cm,
在Rt△CDE中,DE==4cm,
∴AE=AD﹣DE=5cm﹣4cm=1cm;
在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,
∴EP2=12+(3﹣EP)2,
解得:EP=,
∴菱形BFEP的边长为;
②当点Q与点C重合时,如图2:
点E离点A最近,由①知,此时AE=1cm;
当点P与点A重合时,如图3所示:
点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,
∴点E在边AD上移动的最大距离为2cm.
本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.
17、(1)图形见解析(2)30°
【解析】
试题分析:(1)画出线段AB的垂直平分线,交AC于点P,点P即为所求;
(2)由点P到AB、BC的距离相等可得出PC=PD,结合BP=BP可证出Rt△BCP≌Rt△BDP(HL),根据全等三角形的性质可得出BC=BD,结合AB=2BD及∠C=90°,即可求出∠A的度数.
试题解析:
(1)依照题意,画出图形,如图所示.
(2)∵点P到AB、BC的距离相等,
∴PC=PD.
在Rt△BCP和Rt△BDP中,
,
∴Rt△BCP≌Rt△BDP(HL),
∴BC=BD.
又∵PD垂直平分AB,
∴AD=2BD=2BC.
在Rt△ABC中,∠C=90°,AB=2BC,
∴∠A=30°.
【点睛】本题考查了尺规作图、线段垂直平分线的性质、全等三角形的判定与性质以及解含30°角的直角三角形,解题的关键是:(1)熟练掌握尺规作图;(2)通过证全等三角形找出AB=2BC.
18、(1);(2)-12
【解析】
(1)都含有因数 ,利用提取公因式法即可解答
(2)先提取公因式xy,再根据完全平方公式进行二次分解,然后代入数据计算即可得解.
【详解】
解:(1)
.
(2)∵,,
∴
,
,
.
本题考查因式分解,熟练掌握运算法则是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据菱形的性质,菱形的面积等于两条对角线乘积的一半,代入数值计算即可。
【详解】
解:菱形ABCD的面积=
=
=
本题考查了菱形的性质:菱形的面积等于两条对角线乘积的一半。
20、13
【解析】
根据题意连接,取的中点,连接,,利用三角形中位线定理得到,,再根据勾股定理即可解答.
【详解】
连接,取的中点,连接,,
∵、分别是、的中点,
∴OM= BE,ON=AD,
∴,,
∵、分别是、的中点,的中点,
∴OM∥EB,ON∥AD,且,
∴∠MON=90°,
由勾股定理, .
故答案为:13.
此题考查三角形中位线定理,勾股定理,解题关键在于作辅助线.
21、菱形
【解析】
由条件可知AB∥CD,AD∥BC,再证明AB=BC,即可解决问题.
【详解】
过点D作DE⊥AB于E,DF⊥BC于F.
∵两把直尺的对边分别平行,即:AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形,
∵两把直尺的宽度相等,
∴DE=DF.
又∵平行四边形ABCD的面积=AB•DE=BC•DF,
∴AB=BC,
∴平行四边形ABCD为菱形.
故答案为:菱形.
本题主要考查菱形的判定定理,添加辅助线,利用平行四边形的面积法证明平行四边形的邻边相等,是解题的关键.
22、x≤1
【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.
【详解】
解:由题意得,1﹣x≥0,
解得,x≤1,
故答案为x≤1.
本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
23、
【解析】
连接,取的中点,连,,由中位线性质得到,,,,设,由勾股定理得方程,求解后进一步可得MN的值.
【详解】
解:连接,取的中点,连,,
则,,,
∵,为中点
∴,
∵BD平分,
∴BE=EG
设,
则,
∴在中,
,
解得(舍),
∴,,
∴.
本题考查了正方形和直角三角形的性质,添加辅助线后运用中位线性质和方程思想解决问题是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、证明见解析.
【解析】
试题分析:首先证明△AEB≌△CFD可得AB=CD,再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.
试题解析:∵AB∥CD,
∴∠DCA=∠BAC,
∵DF∥BE,
∴∠DFA=∠BEC,
∴∠AEB=∠DFC,
在△AEB和△CFD中
,
∴△AEB≌△CFD(ASA),
∴AB=CD,
∵AB∥CD,
∴四边形ABCD为平行四边形.
25、(1)见详解;(2)成立,证明见详解.
【解析】
(1) 根据三角形内角和定理以及角平分线的定义得到∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),然后根据三角形的外角的性质可以得到∠FEC=∠B+∠BAE,求得∠FEC,再根据直角三角形的两个锐角互余即可求得结论;
(2)根据(1)可以得到∠AEC=90°+(∠B﹣∠C),根据对顶角相等即可求得∠DEF,然后利用直角三角形的两个锐角互余即可求解.
【详解】
解:(1)∵AE平分∠BAC,
∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)
=90°﹣(∠B+∠C),
∵∠FEC=∠B+∠BAE,
则∠FEC=∠B+90°﹣(∠B+∠C)
=90°+(∠B﹣∠C),
∵FD⊥EC,
∴∠EFD=90°﹣∠FEC,
则∠EFD=90°﹣[90°+(∠B﹣∠C)]
=(∠C﹣∠B);
(2)成立.
证明:同(1)可证:∠AEC=90°+(∠B﹣∠C),
∴∠DEF=∠AEC=90°+(∠B﹣∠C),
∴∠EFD=90°﹣[90°+(∠B﹣∠C)]
=(∠C﹣∠B).
此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.
26、(1)60;(2)图形见解析,“基本了解”部分所对应扇形的圆心角的大小为90°.
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数;
(2)由(1)可求得了解的人数,继而补全折线统计图;求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
【详解】
(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
“了解”的人数为:(人);
补全统计图,如图所示:
扇形统计图中“基本了解”部分所对应扇形的圆心角为:
题号
一
二
三
四
五
总分
得分
组别
获取新闻的最主要途径
人数
A
电脑上网
280
B
手机上网
m
C
电视
140
D
报纸
n
E
其它
80
相关试卷
这是一份云南省保山市名校2025届九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届云南省昆明市实验中学九上数学开学教学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份云南省牟定县茅阳中学2023-2024学年九上数学期末质量检测模拟试题含答案,共9页。试卷主要包含了在中,,,,则的值为,下列说法中,正确的是,二次函数的图象与轴的交点个数是等内容,欢迎下载使用。