云南省文山县2025届九年级数学第一学期开学达标检测试题【含答案】
展开
这是一份云南省文山县2025届九年级数学第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若从边形的一个顶点出发,最多可以作3条对角线,则该边形的内角和是( )
A.B.C.D.
2、(4分)的值为( )
A.B.C.4D.8
3、(4分)若分式的值为0,则的取值为( )
A.B.1C.D.
4、(4分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图1.两次旋转的角度分别为( )
A.45°,90°B.90°,45°C.60°,30°D.30°,60°
5、(4分)据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是( )
A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100
6、(4分)正方形ABCD的边长为2,以AD为边作等边△ADE,则点E到BC的距离是( )
A.2+B.2-C.2+,2-D.4-
7、(4分)在直角三角形中,若两条直角边的长分别是1cm,2cm,则斜边的长( )cm.
A.3B.C.D.或
8、(4分)不等式组的解集在数轴上表示正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(m,3),AB⊥x轴于点B,平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数解析式是___.
10、(4分)若分式 的值为零,则x=________.
11、(4分)在函数中,自变量的取值范围是__________.
12、(4分)在△ABC中,D,E分别为AC,BC的中点,若DE=5,则AB=_____.
13、(4分)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系xOy中,直线的表达式为,点A,B的坐标分别为
(1,0),(0,2),直线AB与直线相交于点P.
(1)求直线AB的表达式;
(2)求点P的坐标;
(3)若直线上存在一点C,使得△APC的面积是△APO的面积的2倍,直接写出点C的坐标.
15、(8分)(1)因式分解:;
(2)计算:
16、(8分)已知:如图,ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B= 60 ,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论
17、(10分)如图,从电线杆离地面5m处向地面拉一条长13m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?
18、(10分)如图1,在6×6的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.△ABC的顶点在格点上.点D是BC的中点,连接AD.
(1)在图2、图3两个网格图中各画出一个与△ABC相似的三角形,要求所画三角形的顶点在格点上,相似比各不相同,且与△ABC的相似比不为1;
(2)tan∠CAD= .
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)两个实数,,规定,则不等式的解集为__________.
20、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOD=120°, AB=2,则BC的长为___________.
21、(4分)______.
22、(4分)如图,在平面直角坐标系xOy中,菱形AOBC的边长为8,∠AOB=60°. 点D是边OB上一动点,点E在BC上,且∠DAE=60°.
有下列结论:
①点C的坐标为(12,);②BD=CE;
③四边形ADBE的面积为定值;
④当D为OB的中点时,△DBE的面积最小.
其中正确的有_______.(把你认为正确结论的序号都填上)
23、(4分)某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m,则购买这种地毯至少需要_____元.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,E为CA延长线上一点,D为AB上一点,F为外一点且连接DF,BF.
(1)当的度数是多少时,四边形ADFE为菱形,请说明理由:
(2)当AB= 时,四边形ACBF为正方形(请直接写出)
25、(10分)如图,矩形ABCD中,AB=9,AD=4. E为CD边上一点,CE=6. 点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
(1)求AE的长;
(2)当t为何值时,△PAE为直角三角形;
(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.
26、(12分)(1)计算: (2)计算:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=3,求出n的值,最后根据多边形内角和公式可得结论.
【详解】
由题意得:n-3=3,解得n=6,
则该n边形的内角和是:(6-2)×180°=720°,
故选B.
本题考查了多边形的对角线和多边形的内角和公式,熟记n边形从一个顶点出发可引出(n-3)条对角线是解答此题的关键.
2、C
【解析】
表示16的算术平方根,根据二次根式的意义解答即可.
【详解】
.
故选C.
主要考查了二次根式的化简.注意最简二次根式的条件是:
①被开方数的因数是整数,因式是整式;
②被开方数中不含能开得尽方的因数因式.
上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.
3、A
【解析】
根据分式的值为0的条件列式求解即可.
【详解】
根据题意得,x+1=0且x−1≠0,
解得x=−1.
故选A
此题考查分式的值为零的条件,难度不大
4、A
【解析】
本题考查了旋转的性质、等腰直角三角形的性质. 图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图1中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.
解:根据图1可知,
∵△ABC和△ADE是等腰直角三角形,
∴∠CAB=45°,
即△ABC绕点A逆时针旋转45°可到△ADE;
如图,
∵△ABC和△ADE是等腰直角三角形,
∴∠DAE=∠CAB=45°,
∴∠FAB=∠DAE+∠CAB=90°,
即图1可以逆时针连续旋转90°得到图1.
故选A.
5、B
【解析】
试题分析:每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.
因此,y=100×0.05x,
即y=5x.
故选B.
考点:函数关系式.
6、C
【解析】
由等边三角形的性质可得点E到AD上的距离为,分两种情况可求点E到BC的距离.
【详解】
解:∵等边△ADE的边长为2
∴点E到AD上的距离EG为,
当△ADE在正方形外面,
∴点E到BC的距离=2+
当△ADE在正方形里面
∴点E到BC的距离=2-
故选:C.
本题考查了正方形的性质,等边三角形的性质,熟练运用正方形的性质是本题的关键.
7、B
【解析】
分析:由于1cm和2cm是直角三角形的两条边,可根据勾股定理求出斜边的长.
详解:∵在直角三角形中,若两条直角边的长分别是1cm,2cm,∴斜边长==(cm).
故选B.
点睛:本题考查了勾股定理,由于本题较简单,直接利用勾股定理解答即可.
8、B
【解析】
根据大于小的小于大的取中间确定不等式组的解集,最后用数轴表示解集.
【详解】
所以这个不等式的解集是-3≤x<1,
用数轴表示为
故选B
此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=x﹣1.
【解析】
可以先求出点A的坐标,进而知道直线平移的距离,得出点B的坐标,平移前后的k相同,设出平移后的关系式,把点B的坐标代入即可.
【详解】
∵点A(m,1)在反比例函数y=的图象,
∴1=,即:m=2,
∴A(2,1)、B(2,0)
点A在y=kx上,
∴k=
∴y=x
∵将直线y=x平移2个单位得到直线l,
∴k相等
设直线l的关系式为:y=x+b,把点B(2,0)代入得:b=﹣1,
直线l的函数关系式为:y=x﹣1;
故答案为:y=x﹣1.
本题考查反比例函数的图象上点的坐标的特点、待定系数法求函数解析式、一次函数和平移等知识,理解平移前后两个因此函数的k值相等,是解决问题的关键.
10、2
【解析】
分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
依题意得x2-x-2=1,解得x=2或-1,
∵x+1≠1,即x≠-1,
∴x=2.
此题考查的是对分式的值为1的条件的理解和因式分解的方法的运用,该类型的题易忽略分母不为1这个条件.
11、x>-1
【解析】
试题解析:根据题意得,x+1>0,
解得x>-1.
故答案为x>-1..
12、1.
【解析】
根据三角形中位线定理解答即可.
【详解】
∵D,E分别为AC,BC的中点,
∴AB=2DE=1,
故答案为:1.
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
13、
【解析】
【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..
【详解】设点P坐标为(a,0)
则点A坐标为(a,),B点坐标为(a,﹣)
∴S△ABC=S△ABO =S△APO+S△OPB==,
故答案为.
【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) y=-1x+1 ;(1) P的坐标为(1,-1);(3) (3,0),(1,-4).
【解析】
【分析】(1)用待定系数法求函数的解析式;(1)由两个解析式构成方程组,解方程组可得交点的坐标;(3)点P可能在P的上方或下方,结合图形进行分析计算.
【详解】
解:(1)设直线AB的表达式为y=kx+b.
由点A,B的坐标分别为(1,0),(0,1),
可知
解得
所以直线AB的表达式为y=-1x+1.
(1)由题意,
得
解得
所以点P的坐标为(1,-1).
(3)(3,0),(1,-4).
【点睛】本题考核知识点:一次函数的解析式,交点. 解题关键点:理解一次函数的性质.
15、(1)y(x-2)2;(2) .
【解析】
(1)先提公因式,再利用完全平方公式矩形因式分解;
(2)根据分式的减法运算法则计算.
【详解】
解:(1)x2y-4xy+4y
=y(x2-4x+4)
=y(x-2)2;
(2)
=
=
=
= .
故答案为:(1)y(x-2)2;(2) .
本题考查因式分解、分式的加减运算,掌握提公因式法、完全平方公式因式分解、分式的加减法法则是解题的关键.
16、(1)见解析(2)当时,四边形是菱形,理由见解析
【解析】
(1)易证,则(2)E点为BF中点时符合题意,即可求解.
【详解】
证明:(1)∵四边形是平行四边形,
∴.
∵是边上的高,且是由沿方向平移而成.
∴.
∴.∵,
∴.
∴.
(2)当时,四边形是菱形.
∵,,
∴四边形是平行四边形.
∵中,,
∴,∴.
∵,∴.∴.
∴四边形是菱形.
17、12m
【解析】
根据题意得出在Rt△ABC中,BC=即可求得.
【详解】
如图所示:
由题意可得,AB=5m,AC=13m,
在Rt△ABC中,BC==12(m),
答:这条缆绳在地面的固定点距离电线杆底部12m.
要考查了勾股定理的应用,根据题意得出△ABC是直角三角形是解题关键,再运用勾股定理求得BC的值.
18、(1)见解析;(2).
【解析】
(1)利用相似三角形的性质结合网格特点画三角形即可;
(2)利用勾股定理结合锐角三角函数关系求出即可.
【详解】
解:(1)如图所示:△EMF和△A′B′C′即为所求;
(2)由图1可知∠ACB=90°,DC=,AC=,
∴tan∠CAD=.
故答案为:.
本题主要考查了相似三角形的性质及锐角三角函数的定义,利用相似三角形的判定方法画出图形是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据题意列出方程,再根据一元一次不等式进行解答即可.
【详解】
由规定,可得.
所以,,就是,解得,.
故答案为:
此题考查解一元一次不等式,解题关键在于理解题意.
20、
【解析】
由条件可求得为等边三角形,则可求得的长,在中,由勾股定理可求得的长.
【详解】
,
,
四边形为矩形
,
为等边三角形,
,
,
在中,由勾股定理可求得.
故答案为:.
本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键.
21、1
【解析】
利用平方差公式即可计算.
【详解】
原式.
故答案为:1.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
22、①②③
【解析】
①过点C作CF⊥OB,垂足为点F,求出BF=4,CF=,即可求出点C坐标;②连结AB,证明△ADB≌△AEC,则BD=CE;③由S△ADB=S△AEC,可得S△ABC=S△四边形ADBE=×8×=;④可证△ADE为等边三角形,当D为OB的中点时,AD⊥OB,此时AD最小,则S△ADE最小,由③知S四边形ADBE为定值,可得S△DBE最大.
【详解】
解:①过点C作CF⊥OB,垂足为点F,
∵四边形AOBC为菱形,
∴OB=BC=8,∠AOB=∠CBF=60°,
∴BF=4,CF=,
∴OF=8+4=12,
∴点C的坐标为(12,),故①正确;
②连结AB,
∵BC=AC=AO=OB,∠AOB=∠ACB=60°,
∴△ABC是等边三角形,△AOB是等边三角形,
∴AB=AC,∠BAC=60°,
∵∠DAE=60°,
∴∠DAB=∠EAC,
∵∠ABD=∠ACE=60°,
∴△ADB≌△AEC(ASA),
∴BD=CE,故②正确;
③∵△ADB≌△AEC.
∴S△ADB=S△AEC,
∴S△ABC=S△四边形ADBE=×8×=,故③正确;
④∵△ADB≌△AEC,
∴AD=AE,
∵∠DAE=60°,
∴△ADE为等边三角形,
当D为OB的中点时,AD⊥OB,
此时AD最小,则S△ADE最小,
由③知S四边形ADBE为定值,可得S△DBE最大.
故④不正确;
故答案为:①②③.
本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质等,正确作出辅助线是解题的关键.
23、1
【解析】
解:已知直角三角形的一条直角边是3m,斜边是5m,根据勾股定理得到:水平的直角边是4m,地毯水平的部分的和是水平边的长,竖直的部分的和是竖直边的长,则购买这种地毯的长是3m+4m=7m,则面积是14m2,价格是14×30=1元.故答案为1.
二、解答题(本大题共3个小题,共30分)
24、 (1)当时,四边形ADFE为菱形,理由详见解析; (2).
【解析】
(1)当∠CAB=60°时,四边形ADFE为菱形;由平行线的性质可证∠AFE=∠DAF,∠AEF=∠CAB=60°,可得△AEF,△AFD都是等边三角形,可得AE=AF=AD=EF=FD,即可得结论.
(2)由正方形的性质可求解.
【详解】
(1)当∠CAB=60°时,四边形ADFE为菱形,
理由如下:
∵AE=AF=AD
∴∠AEF=∠AFE,
∵EF∥AB
∴∠AFE=∠DAF,∠AEF=∠CAB=60°
∴∠FAD=60°
∴△AEF,△AFD都是等边三角形
∴AE=AF=AD=EF=FD
∴四边形ADFE为菱形
(2)若四边形ACBF为正方形
∴AC=BC=1,∠ACB=90°
∴AB=
∴当AB=时,四边形ACBF为正方形
故答案为
本题考查了正方形的判定和性质,菱形的判定和性质,等腰三角形的性质,灵活运用这些性质解决问题是本题的关键.
25、(1)5;(2)6或;(3)存在,t=,理由见解析
【解析】
(1)在直角△ADE中,利用勾股定理进行解答;
(2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;
(3)假设存在.利用角平分线的性质,平行线的性质以及等量代换推知:∠PEA=∠EAP,则PE=PA,由此列出关于t的方程,通过解方程求得相应的t的值即可.
【详解】
解:(1)∵矩形ABCD中,AB=9,AD=4,
∴CD=AB=9,∠D=90°,
∴DE=9﹣6=3,
∴AE==5;
(2)①若∠EPA=90°,BP=CE=6,∴t=6;
②若∠PEA=90°,如图,
过点P作PH⊥PH⊥CD于H,∵四边形ABCD是矩形,
∴∠B=∠C=90°,
∴四边形BCHP是矩形,
∴CH=BP=t,PH=BC=4,
∴HE=CE-CH=6-t,
在Rt△PHE中,PE2=HE2+PH2=(6-t)2+42,
∵∠PEA=90°,
在Rt△PEA中,根据勾股定理得,PE2+AE2=AP2,
∴(6-t)2+42+52=(9-t)2,,
解得t=.
综上所述,当t=6或t=时,△PAE为直角三角形;
(3)假设存在.
∵EA平分∠PED,
∴∠PEA=∠DEA.
∵CD∥AB,
∴∠DEA=∠EAP,
∴∠PEA=∠EAP,
∴PE=PA,
∴,
解得t=.
∴满足条件的t存在,此时t=.
此题是四边形综合题,主要考查了矩形的判定和性质,勾股定理,解一元二次方程,用勾股定理建立方程是解本题的关键.
26、(1)15;(2).
【解析】
(1)先进行二次根式的化简,然后再根据二次根式乘除法的运算法则进行计算即可;
(2)先分别化简各个二次根式,然后再进行合并即可.
【详解】
(1)原式=3×5÷
=15÷
=15;
(2)原式=3﹣4+
=-+.
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份云南省曲靖市第一中学2024年九年级数学第一学期开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份云南省昆明市祯祥中学2024-2025学年数学九年级第一学期开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年云南省罗平县数学九年级第一学期开学达标测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。