年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    云南省西双版纳市2024年九上数学开学学业质量监测模拟试题【含答案】

    云南省西双版纳市2024年九上数学开学学业质量监测模拟试题【含答案】第1页
    云南省西双版纳市2024年九上数学开学学业质量监测模拟试题【含答案】第2页
    云南省西双版纳市2024年九上数学开学学业质量监测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省西双版纳市2024年九上数学开学学业质量监测模拟试题【含答案】

    展开

    这是一份云南省西双版纳市2024年九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为( )
    A.(6,2)B.(4,4)C.(2,6)D.(12,﹣4)
    2、(4分)如图,在正方形 中, 是 上的一点,且 ,则 的度数是()
    A.B.C.D.
    3、(4分)下列方程有两个相等的实数根的是( )
    A.B.
    C.D.
    4、(4分)化简的结果是( )
    A.2B.C.D.
    5、(4分)如图,直线y=-x+2与x轴交于点A,则点A的坐标是( )
    A.(2,0)B.(0,2)C.(1,1)D.(2,2)
    6、(4分)张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点5分、7点15分离家骑自行车上班,刚好在校门口相遇,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是米/分,则可列得方程为( )
    A.B.C.D.
    7、(4分)已知菱形ABCD的面积是120,对角线AC=24,则菱形ABCD的周长是( )
    A.52B.40C.39D.26
    8、(4分)如图,的对角线与相交于点,,,,则的长为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)甲、乙两个班级各20名男生测试“引体向上”,成绩如下图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为S2甲和S2乙,则S2甲____S2乙.(填“>”,“<”或“=”)
    10、(4分)如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F分别为AO、AD的中点,则EF的长是_____.
    11、(4分)因式分解: .
    12、(4分)要使式子有意义,则的取值范围是__________.
    13、(4分)在一列数2,3,3,5,7中,他们的平均数为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知一个一次函数的图象与一个反比例函数的图象交于点.
    分别求出这两个函数的表达式;
    在同一个平面直角坐标系中画出这两个函数的图象,根据图象回答:当取何值时,一次函数的值大于反比例函数的值?
    求平面直角坐标中原点与点构成的三角形的面积.
    15、(8分)全国在抗击“新冠肺炎”疫情期间,甲,乙两家公司共同参与一项改建有1800个床位的方舱医院的工程.已知甲,乙两家公司每小时改建床位的数量之比为3:1.且甲公司单独完成此项工程比乙公司单独完成此项工程要少用10小时,
    (1)分别求甲,乙两家公司每小时改建床位的数量;
    (1)甲,乙两家公司完成该项工程,若要求乙公司的工作时间不得少于甲公司的工作时间的,求乙公司至少工作多少小时?
    16、(8分)已知y是x的一次函数,当x=1时,y=1;当x=-2时,y=-14.
    (1)求这个一次函数的关系式;
    (2)在如图所示的平面直角坐标系中作出函数的图像;
    (3)由图像观察,当0≤x≤2时,函数y的取值范围.
    17、(10分)如图,在中,延长至点,使,连接,作于点,交的延长线于点,且.
    (1)求证:;
    (2)如果,求的度数.
    18、(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,5),B(﹣2,1),C(﹣1,1).
    (1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标,并画出△A1B1C1;
    (2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;
    (1)将△ABC绕着点O按顺时针方向旋转90°得到△A1B1C1,写出△A1B1C1的各顶点的坐标,并画出△A1B1C1.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.
    20、(4分)解分式方程+=时,设=y,则原方程化为关于y的整式方程是______.
    21、(4分)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.

    22、(4分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.
    23、(4分)将菱形以点为中心,按顺时针方向分别旋转,,后形成如图所示的图形,若,,则图中阴影部分的面积为__.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点、,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.
    (1)线段的长度为__________;
    (2)求直线所对应的函数解析式;
    (3)若点在线段上,在线段上是否存在点,使四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
    25、(10分)解不等式组:.
    26、(12分)已知a,b是直角三角形的两边,且满足,求此三角形第三边长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据题意画出图形,根据三角形的面积公式即可得出S关于y的函数关系式,由函数关系式及点P在第一象限即可得出x的值,即可解答
    【详解】
    △OPA的面积为S==12,
    所以,y=4,
    由x+y=8,得x=4,
    所以,P(4,4),选B。
    此题考查坐标与图形性质,解题关键在于得出x的值
    2、B
    【解析】
    在正方形中可知∠BAC=45°,由AB=AE,进而求出∠ABE,又知∠ABE+∠EBC=90°,故能求出∠EBC.
    【详解】
    解:在正方形ABCD中,∠BAC=45°,
    ∵AB=AE,
    ∴∠ABE=∠AEB=67.5°,
    ∵∠ABE+∠EBC=90°,
    ∴∠EBC=22.5°,
    故选B.
    本题主要考查正方形的性质,等腰三角形的性质等知识点,熟练掌握基础知识是解题关键.
    3、B
    【解析】
    分别计算各选项的判别式△值,然后和0比较大小,再根据一元二次方程根与系数的关系就可以找出符合题意的选项.
    【详解】
    A、△=b2 -4ac=1+24=25>0,方程有两个不相等的实数根,不符合题意;
    B、△=b2 -4ac=36-36=0,方程有两个相等的实数根,符合题意;
    C、△=b2 -4ac=25-40=-150,方程有两个不相等的实数根,不符合题意,
    故选B.
    本题考查了一元二次方程根的情况与与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    4、D
    【解析】
    直接利用二次根式的性质化简求出答案.
    【详解】
    解:.
    故选:D.
    此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
    5、A
    【解析】
    一次函数y=kx+b(k≠0,且k,b为常数)的图象是一条直线.令y=0,即可得到图象与x轴的交点.
    【详解】
    解:直线中,令.则.
    解得.
    ∴.
    故选:A.
    本题主要考查了一次函数图象上点的坐标特征,一次函数y=kx+b(k≠0,且k,b为常数)与x轴的交点坐标是(−,0),与y轴的交点坐标是(0,b).
    6、A
    【解析】
    设张老师骑自行车的速度是x米/分,则李老师骑自行车的速度是1.2x米/分,根据题意可得等量关系:张老师行驶的路程3000÷他的速度-李老师行驶的路程3000÷他的速度=10分钟,根据等量关系列出方程即可.
    【详解】
    设张老师骑自行车的速度是x米/分,由题意得:

    故选:A.
    此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出李老师和张老师各行驶3000米所用的时间,根据时间关系列出方程.
    7、A
    【解析】
    先利用菱形的面积公式计算出BD=10,然后根据菱形的性质和勾股定理可计算出菱形的边长=13,从而得到菱形的周长.
    【详解】
    ∵菱形ABCD的面积是120,
    即×AC×BD=120,
    ∴BD==10,
    ∴菱形的边长==13,
    ∴菱形ABCD的周长=4×13=1.
    故选A.
    本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积计算可利用平行四边形的面积公式计算,也可利用菱形面积=ab(a、b是两条对角线的长度)进行计算.
    8、A
    【解析】
    由平行四边形ABCD得OA=OC,OB=OD,在Rt△ABO中,由勾股定理得AB的长,即可得出答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵,,,
    ∴OA=3,OB=4,
    ∵,
    在Rt△ABO中,由勾股定理得
    AB==,
    ∴CD=AB=.
    故选A.
    本题考查平行四边形的性质,勾股定理.正确的理解平行四边形的性质勾股定理是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、<
    【解析】
    分别求出甲、乙两个班级的成绩平均数,然后根据方差公式求方差作比较即可.
    【详解】
    解:甲班20名男生引体向上个数为5,6,7,8的人数都是5,
    乙班20名男生引体向上个数为5和8的人数都是6个,个数为6和7的人数都是4个,
    ∴甲班20名男生引体向上的平均数=,
    乙班20名男生引体向上的平均数=,
    ∴,

    ∴,
    故答案为:<.
    本题考查了方差的计算,熟练掌握方差公式是解题关键.
    10、1.
    【解析】
    根据矩形的性质得出AO=OC,DO=BO,AC=BD,求出DO=CO=AO=BO,求出△AOB是等边三角形,根据等边三角形的性质得出AO=OB=DO=10,根据三角形的中位线定理求出即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AO=OC,DO=BO,AC=BD,
    ∴DO=CO=AO=BO,
    ∵∠AOB=60°,
    ∴△AOB是等边三角形,
    ∵AB=10,
    ∴AO=OB=DO=10,
    ∵E、F分别为AO、AD的中点,
    ∴EF=DO==1,
    故答案为:1.
    本题考查了矩形的性质,等边三角形的判定与性质,三角形的中位线等知识. 矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.
    11、
    【解析】
    解:=;
    故答案为
    12、
    【解析】
    根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.
    【详解】
    由题意得:
    2-x≥0,
    解得:x≤2,
    故答案为x≤2.
    13、1
    【解析】
    直接利用算术平均数的定义列式计算可得.
    【详解】
    解:这组数据的平均数为=1,
    故答案为:1.
    本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.
    三、解答题(本大题共5个小题,共48分)
    14、(1),;(2)图见详解,或;(3).
    【解析】
    (1)设反比例的函数解析式为,一次函数的解析式为,将点P代入可得k值,将点Q代入可得m值,将点P、Q代入求解即可;
    (2)描点、连线即可画出函数的图象,当一次函数的图象在反比例函数图象的上方时,一次函数的值大于反比例函数的值,由此可确定x的取值;
    (3)连接PO,QO,设直线与y轴交于点M,由求解.
    【详解】
    解:(1)设反比例的函数解析式为,一次函数的解析式为,
    将点代入得,解得,
    将点代入得,
    将点,代入
    得:,
    解得

    所以一次函数的表达式为,反比例函数的表达式为;
    (2)函数和的图象如图所示,
    由图象可得,当或时,一次函数的值大于反比例函数的值;
    (3)如图,连接PO,QO,设直线与y轴交于点M,
    直线与y轴的交点坐标M(0,-1),即,点P到y轴的距离为2,点Q到y轴的距离为1,

    所以平面直角坐标中原点与点构成的三角形的面积为.
    本题考查了一次函数与反比例函数的综合,涉及了待定系数法求函数解析式、画函数图象、根据函数图象及函数值的大小确定自变量的取值范围、围成的三角形的面积,熟练掌握待定系数法及运用数形结合的数学思想是解题的关键.
    15、(1)甲公司每小时改建床位的数量是45个,乙公司公司每小时改建床位的数量是30个;(1)2小时
    【解析】
    (1)设甲公司每小时改建床位的数量是x个,则乙公司公司每小时改建床位的数量是y个,根据甲,乙两家公司每小时改建床位的数量之比为3:1;甲做的工作量+乙做的工作量=工作总量建立方程组求出其解即可;
    (1)设乙公司工作z小时,根据乙公司的工作时间不得少于甲公司的工作时间的,建立不等式求出其解即可.
    【详解】
    解:(1)设甲公司每小时改建床位的数量是x个,则乙公司公司每小时改建床位的数量是y个,依题意有

    解得,,
    经检验,是方程组的解且符合题意,
    故甲公司每小时改建床位的数量是45个,乙公司公司每小时改建床位的数量是30个;
    (1)设乙公司工作z小时,依题意有
    z≥×,
    解得z≥2.
    故乙公司至少工作2小时.
    本题考查了一元一次不等式的应用、列分式方程和二元一次方程组解实际问题的运用,是一道工程问题的运用题,解答时根据甲的工作效率+乙的工作效率=合作一天的工作效率为等量关系建立方程是关键,第二问列出不等式是解题的关键.
    16、(1)y=5x-4;(2)详见解析;(3)-4≤y≤1.
    【解析】
    (1)设函数解析式y=kx+b,将题中的两个条件代入即可得出解析式;
    (2)根据题意可确定函数上的两个点(1,1)、(-2,-14),运用两点法即可确定函数图象.
    (3)根据图象可知,当0≤x≤2时,y的取值范围是-4≤x≤1.
    【详解】
    解:(1)设函数的关系式为y=kx+b,
    则由题意,得 解得,
    ∴一次函数的关系式为y=5x-4;
    (2)所作图形如图.
    (3)∵0≤x≤2,
    ∴y的取值范围是:-4≤y≤1.
    故答案为:(1)y=5x-4;(2)图形见解析;(3)-4≤y≤1.
    本题考查待定系数法求函数解析式及一次函数图象上点的坐标特征,难度不大,注意掌握一次函数的性质.
    17、(1)详见解析;(2)40°
    【解析】
    (1)先由HL判定Rt△BCE≌Rt△CDF,得到∠ABC=∠DCF,然后由对顶角相等可得:∠DCF=∠ACB,进而可得∠ABC=∠ACB,然后由等角对等边,可得AB=AC;
    (2)由CD=BC,可得∠CBD=∠CDB,然后由三角形的外角的性质可得:∠ACB=∠CBD+∠CDB=2∠CBD,由∠ABC=∠ACB,进而可得:∠ABC=2∠CBD,然后由∠ABD=∠ABC+∠CBD=3∠CBD=105,进而可求:∠CBD的度数及∠ABC的度数,然后由三角形的内角和定理即可求∠A的度数.
    【详解】
    解:(1)证明:∵,,
    ∴.
    又∵,,
    ∴,
    ∴,
    又∵,
    ∴,
    ∴.
    (2)∵,
    ∴.
    ∵,
    ∴.
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.
    此题考查了直角三角形全等的判定与性质,及等腰三角形判定与性质,解题的关键是:熟记三角形全等的判定与性质.
    18、(1)图形见解析;A1的坐标为(2,2),B1点的坐标为(1,﹣2);(2)图形见解析;A2(1,﹣5),B2(2,﹣1),C2(1,﹣1);(1)图形见解析;A1(5,1),B1(1,2),C1(1,1).
    【解析】
    (1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;
    (2)根据关于原点对称的点的坐标特征求解;
    (1)利用网格和旋转的性质画出△A2B1C1,然后写出△A2B1C1的各顶点的坐标.
    【详解】
    (1)如图,△A1B1C1为所作,
    因为点C(﹣1,1)平移后的对应点C1的坐标为(4,0),
    所以△ABC先向右平移5个单位,再向下平移1个单位得到△A1B1C1,
    所以点A1的坐标为(2,2),B1点的坐标为(1,﹣2);
    (2)因为△ABC和△A1B2C2关于原点O成中心对称图形,
    所以A2(1,﹣5),B2(2,﹣1),C2(1,﹣1);
    (1)如图,△A2B1C1为所作,A1(5,1),B1(1,2),C1(1,1).
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、8米.
    【解析】
    在Rt△ABC中,利用勾股定理即可求出BC的值.
    【详解】
    在Rt△ABC中,AB1=AC1+BC1.
    ∵AB=10米,AC=6米,∴BC8米,即梯子的底端到墙的底端的距离为8米.
    故答案为8米.
    本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.
    20、y2-y+1=1
    【解析】
    根据换元法,可得答案.
    【详解】
    解:设=y,则原方程化为y+-=1
    两边都乘以y,得
    y2-y+1=1,
    故答案为:y2-y+1=1.
    本题考查了解分式方程,利用换元法是解题关键.
    21、1
    【解析】
    由0-4分钟的函数图象可知进水管的速度,根据4-12分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.
    解:进水管的速度为:20÷4=5(升/分),
    出水管的速度为:5-(30-20)÷(12-4)=3.75(升/分),
    ∴关停进水管后,出水经过的时间为:30÷3.75=1分钟.
    故答案为1.
    22、1.
    【解析】
    ∵AB=5,AD=12,
    ∴根据矩形的性质和勾股定理,得AC=13.
    ∵BO为Rt△ABC斜边上的中线
    ∴BO=6.5
    ∵O是AC的中点,M是AD的中点,
    ∴OM是△ACD的中位线
    ∴OM=2.5
    ∴四边形ABOM的周长为:6.5+2.5+6+5=1
    故答案为1
    23、
    【解析】
    由菱形性质可得AO,BD的长,根据.可求,则可求阴影部分面积.
    【详解】
    连接,交于点,,
    四边形是菱形,
    ,,,,且

    将菱形以点为中心按顺时针方向分别旋转,,后形成的图形

    故答案为:
    本题考查了:图形旋转的性质、菱形的性质、直角三角形的性质,掌握菱形性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)1;(2);(3)
    【解析】
    (1)根据勾股定理即可解决问题;
    (2)设AD=x,则OD=OA=AD=12-x,根据轴对称的性质,DE=x,BE=AB=9,又OB=1,可得OE=OB-BE=1-9=6,在Rt△OED中,根据OE2+DE2=OD2,构建方程即可解决问题;
    (3)过点E作EP∥BD交BC于点P,过点P作PQ∥DE交BD于点Q,则四边形DEPQ是平行四边形,再过点E作EF⊥OD于点F,想办法求出最小PE的解析式即可解决问题。
    【详解】
    解:(1)在Rt△ABC中,∵OA=12,AB=9,
    故答案为1.
    (2)如图,
    设,则
    根据轴对称的性质,,
    又,
    ∴,
    在中,,
    即,则,
    ∴,

    设直线所对应的函数表达式为:
    则,
    解得
    ∴直线所对应的函数表达式为:.
    故答案为:
    (3)过点作交于点,过点作交于点,则四边形是平行四边形,再过点作于点,

    得,即点的纵坐标为,
    又点在直线:上,
    ∴,解得,

    由于,所以可设直线,
    ∵在直线上
    ∴,解得
    ∴直线为,
    令,则,解得,

    本题考查一次函数综合题、矩形的性质、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握待定系数法,学会构建一次函数解决问题,属于中考压轴题.
    25、2<x≤1
    【解析】
    分别计算出各不等式的解集,再求出其公共解集即可.
    【详解】
    解:解①得:x>2
    解②得:x≤1
    不等式组的解集是2<x≤1.
    本题考查的是解一元一次不等式组,解答此类题目要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    26、3或
    【解析】
    分析:先把右边的项移到左边,,根据完全平方公式变形为,根据算术平方根的非负性和偶次方的非负性列方程求出a、b的值,然后分两种情况利用勾股定理求第三边的长.
    详解:由=8b-b2-16,
    得-8b+b2+16=0,
    得+(b-4)2=0.
    又∵≥0,且(b-4)2≥0,
    ∴a-5=0,b-4=0,
    ∴a=5,b=4,
    当a、b为直角边时,
    第三边=;
    当a为斜边时,
    第三边=;
    点睛:本题考查了算术平方根的非负性,偶次方的非负性,完全平方公式,勾股定理及分类讨论的数学思想. 分两种情况求解是正确解答本题的关键.
    题号





    总分
    得分

    相关试卷

    山东蒙阴县2024年九上数学开学学业质量监测模拟试题【含答案】:

    这是一份山东蒙阴县2024年九上数学开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届天津河北区数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2025届天津河北区数学九上开学学业质量监测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map