搜索
    上传资料 赚现金
    英语朗读宝

    云南省盐津县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】

    云南省盐津县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】第1页
    云南省盐津县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】第2页
    云南省盐津县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省盐津县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】

    展开

    这是一份云南省盐津县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在下列各组数中,是勾股数的是( )
    A.1、2、3B.2、3、4C.3、4、5D.4、5、6
    2、(4分)如图,ABCD中,点在边上,以为折痕,将向上翻折,点正好落在边上的点处,若的周长为8,的周长为18,则的长为( )
    A.5B.8C.7D.6
    3、(4分)如图,在菱形ABCD中,一动点P从点B出发,沿着B→C→D→A的方向匀速运动,最后到达点A,则点P在匀速运动过程中,△APB的面积y随时间x变化的图象大致是( )
    A.B.
    C.D.
    4、(4分)如果一次函数y=kx+不经过第三象限,那么k的取值范围是( )
    A.k<0B.k>0C.k≤0D.k≥0
    5、(4分)点A,B,C,D在数轴上的位置如图所示,则实数对应的点可能是
    A.点AB.点BC.点CD.点D
    6、(4分)已知直线,则下列说法中正确的是( )
    A.这条直线与轴交点在正半轴上,与轴交点在正半轴上
    B.这条直线与轴交点在正半轴上,与轴交点在负半轴上
    C.这条直线与轴交点在负半轴上,与轴交点在正半轴上
    D.这条直线与轴交点在负半轴上,与轴交点在负半轴上
    7、(4分)如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为( )
    A.4B.2C.3D.2
    8、(4分)如图,正方形的边长为3,点在正方形. 内若四边形恰是菱形,连结,且,则菱形的边长为( ).

    A.B.C.2D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)观察下列按顺序排列的等式:,试猜想第n个等式(n为正整数):an=_____.
    10、(4分)直线沿轴平移3个单位,则平移后直线与轴的交点坐标为 .
    11、(4分)函数y=36x-10的图象经过第______象限.
    12、(4分)若ab,则32a__________32b(用“>”、“”或“<”填空).
    13、(4分)若□ABCD中,∠A=50°,则∠C=_______°.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系中,一次函数的图象与轴负半轴交于点,与轴正半轴交于点,点为直线上一点,,点为轴正半轴上一点,连接,的面积为1.
    (1)如图1,求点的坐标;
    (2)如图2,点分别在线段上,连接,点的横坐标为,点的横坐标为,求与的函数关系式(不要求写出自变量的取值范围);
    (3)在(2)的条件下,如图3,连接,点为轴正半轴上点右侧一点,点为第一象限内一点,,,延长交于点,点为上一点,直线经过点和点,过点作,交直线于点,连接,请你判断四边形的形状,并说明理由.
    15、(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
    (1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
    (2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
    16、(8分)已知二次函数(,为常数).
    (1)当,时,求二次函数的最小值;
    (2)当时,若在函数值的情况下,只有一个自变量的值与其对应,求此时二次函数的解析式;
    (3)当时,若在自变量的值满足≤≤的情况下,与其对应的函数值的最小值为21,求此时二次函数的解析式.
    17、(10分)是正方形的边上一动点(不与重合), ,垂足为,将绕点旋转,得到,当射线经过点时,射线与交于点.
    求证:;
    在点的运动过程中,线段与线段始终相等吗?若相等请证明;若不相等,请说明理由.
    18、(10分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.
    (1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.
    20、(4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是 .
    21、(4分)某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.
    22、(4分)______.
    23、(4分)如图,已知函数y=kx+2与函数y=mx-4的图象交于点A,根据图象可知不等式kx+2<mx-4的解集是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图在菱形ABCD中,AB=4,∠DAB=30°,点E是AD的中点,点M是的一个动点(不与点A重合),连接ME并廷长交CD的延长线于点N连接MD,AN.
    (1)求证:四边形AMDN是平行四边形;(2)当AM为何值时,四边形AMDN是矩形并说明理由.
    25、(10分)如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.
    26、(12分)如图,在矩形中,点为上一点,连接、,.
    (1)如图1,若,,求的长.
    (2)如图2,点是的中点,连接并延长交于,为上一点,连接,且,求证:.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
    【详解】
    A、12+22=5≠32,不是勾股数,故本选项不符合题意.
    B、22+32=13≠42,不是勾股数,故本选项不符合题意.
    C、32+42=52,是勾股数,故本选项符合题意.
    D、42+52=41≠62,不是勾股数,故本选项不符合题意.
    故选C.
    本题考查了勾股数的知识,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
    2、A
    【解析】
    根据折叠的性质求出EF=EB,FC=BC,再根据平行四边形的性质得出AB=DC,AD=BC,对周长公式进行等量代换即可得出答案.
    【详解】
    根据折叠的性质可知,EF=EB,FC=BC
    ∵ABCD为平行四边形
    ∴AB=DC,AD=BC
    又△AEF的周长=AF+AE+EF=AF+AE+BE=AF+AB=8
    △CDF的周长=DC+DF+FC=DC+DF+BC=18
    ∴AB+DF+BC=18,BC-DF+AB=8
    ∴AB+DF+BC-BC+DF-AB=18-8
    解得DF=5
    故答案选择A.
    本题考查的是平行四边形的性质以及折叠问题,难度适中,注意折叠前后的两个图形完全重合.
    3、D
    【解析】
    分析动点P在BC、CD、DA上时,△APB的面积y随x的变化而形成变化趋势即可.
    【详解】
    解:当点P沿BC运动时,△APB的面积y随时间x变化而增加,当点P到CD上时,△APB的面积y保持不变,当P到AD上时,△APB的面积y随时间x增大而减少到1.
    故选:D.
    本题为动点问题的图象探究题,考查了函数问题中函数随自变量变化而变化的关系,解答时注意动点到达临界点前后函数图象的变化.
    4、A
    【解析】
    根据一次函数y=kx+b的图象与k、b之间的关系,即可得出k的取值范围.
    【详解】
    ∵一次函数y=kx+的图象不经过第三象限,
    ∴一次函数y=kx+的图象经过第一、二、四象限,
    ∴k<1.
    故选:A.
    本题考查了一次函数的图象与系数k,b的关系,熟练掌握一次函数的图象的性质是解题的关键.
    5、B
    【解析】
    根据被开方数越大算术平方根越大,可得的大小,根据数的大小,可得答案.
    【详解】


    实数对应的点可能是B点,
    故选B.
    本题考查了实数与数轴,利用被开方数越大算术平方根越大得出是解题关键.
    6、C
    【解析】
    先确定直线y=kx+b经过第一、二、三限,即可对各选项进行判断.
    【详解】
    解:∵直线y=kx+b,k>0,b>0,
    ∴直线y=kx+b经过第一、二、三象限,
    故选:C.
    本题考查了一次函数与系数的关系:对于一次函数y=kx+b,它与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.
    7、C
    【解析】
    过D点作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角.在Rt△ABC中,AB=4,∠ABC=30°,则AC=2,BC=2,由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,由面积法:DF×BE=BD×DE求DF,则S△BCD=×BC×DF.
    【详解】
    过D点作BE的垂线,垂足为F,
    ∵∠ABC=30°,∠ABE=150°,
    ∴∠CBE=∠ABC+∠ABE=180°.
    在Rt△ABC中,∵AB=4,∠ABC=30°,∴AC=2,BC=2,
    由旋转的性质可知:BD=BC=2,DE=AC=2,BE=AB=4,
    由DF×BE=BD×DE,即DF×4=2×2,
    解得:DF=,
    S△BCD=×BC×DF=×2×=3(cm2).
    故选C.
    本题考查了旋转的性质,解直角三角形的方法,解答本题的关键是围绕求△BCD的面积确定底和高的值,有一定难度.
    8、D
    【解析】
    过点F作FM⊥AB,则FM=BM,BF2=2FM2,由AF2﹣FB2=3可得AM﹣BM=1,可求出AM=2,BM=1,则AF的长可求出.
    【详解】
    如图,过点F作FM⊥AB,
    ∵∠ABF=45°,
    ∴FM=BM,
    ∴BF2=2FM2,
    ∴AF2﹣BF2=AF2﹣FM2﹣BM2=3
    ∴AM2﹣BM2=3,
    ∵AM+BM=3,
    ∴AM﹣BM=1,
    ∴AM=2,BM=1,
    ∴.
    故选:D.
    此题考查菱形的性质,正方形的性质,勾股定理,等腰直角三角形的性质,注意构造直角三角形是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    根据题意可知,
    ∴.
    10、(0,2)或(0,)
    【解析】
    试题分析:∵直线沿轴平移3个单位,包括向上和向下,
    ∵平移后的解析式为或.
    ∵与轴的交点坐标为(0,2);与轴的交点坐标为(0,).
    11、【解析】
    根据y=kx+b(k≠0,且k,b为常数),当k>0,b<0时,函数图象过一、三、四象限.
    【详解】
    解:因为函数中,
    ,,
    所以函数图象过一、三、四象限,
    故答案为:一、三、四.
    此题主要考查了一次函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.
    12、
    【解析】
    根据不等式的性质进行判断即可
    【详解】
    解:∵ab,
    ∴2a2b
    ∴32a32b
    故答案为:<
    本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
    13、50
    【解析】
    因为平行四边形的对角相等,所以∠C=50°,故答案为: 50°.
    三、解答题(本大题共5个小题,共48分)
    14、(1)B(6,0);(2)d=;(3)四边形是矩形,理由见解析
    【解析】
    (1)作DL⊥y轴垂足为L点,DI⊥AB垂足为I,证明△DLC≌△AOC,求得D(2,12),再由S△ABD=AB•DI=1,求得OB=AB−AO=8−2=6,即可求B坐标;
    (2)设∠MNB=∠MBN=α,作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;证明四边形MPKQ为矩形,再证明△MNP≌△MQB,求出BD的解析式为y=−3x+18,MQ=d,把y=d代入y=−3x+18得d=−3x+18,表达出OQ的值,再由OQ=OK+KQ=t+d,可得d=−;
    (3)作NW⊥AB垂足为W,证明△ANW≌△CAO,根据边的关系求得N(4,2);延长NW到Y,使NW=WY,作NS⊥YF,再证明△FHN≌△FSN,可得SF=FH=,NY=2+2=4;设YS=a,FY=FN=a+,在Rt△NYS和Rt△FNS中利用勾股定理求得FN;在Rt△NWF中,利用勾股定理求出WF=6,得到F(10,0);设GF交y轴于点T,设FN的解析式为y=px+q (p≠0)把F(10,0)N(4,2)代入即可求出直线FN的解析式,联立方程组得到G点坐标;把G点代入得到y=x+3,可知R(4,0),证明△GRA≌△EFR,可得四边形AGFE为平行四边形,再由∠AGF=180°−∠CGF=90°,可证明平行四边形AGFE为矩形.
    【详解】
    解:(1)令x=0,y=6,令y=0,x=−2,
    ∴A(−2,0),B(0,6),
    ∴AO=2,CO=6,
    作DL⊥y轴垂足为L点,DI⊥AB垂足为I,
    ∴∠DLO=∠COA=90°,∠DCL=∠ACO,DC=AC,
    ∴△DLC≌△AOC(AAS),
    ∴DL=AO=2,
    ∴D的横坐标为2,
    把x=2代入y=3x+6得y=12,
    ∴D(2,12),
    ∴DI=12,
    ∵S△ABD=AB•DI=1,
    ∴AB=8;
    ∵OB=AB−AO=8−2=6,
    ∴B(6,0);
    (2)∵OC=OB=6,
    ∴∠OCB=∠CBO=45°,
    ∵MN=MB,
    ∴设∠MNB=∠MBN=α,
    作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;
    ∴∠NKB=∠MQK=∠MPK=90°,
    ∴四边形MPKQ为矩形,
    ∴NK∥CO,MQ=PK;
    ∵∠KNB=90°−45°=45°,
    ∴∠MNK=45°+α,∠MBQ=45°+α,
    ∴∠MNK=∠MBQ,
    ∵MN=MB,∠NPM=∠MQB=90°,
    ∴△MNP≌△MQB(AAS),
    ∴MP=MQ;
    ∵B(6,0),D(2,12),
    ∴设BD的解析式为y=kx+b(k≠0),
    ∴,解得:k=-3,b=18,
    ∴BD的解析式为y=−3x+18,
    ∵点M的纵坐标为d,
    ∴MQ=MP=d,把y=d代入y=−3x+18得d=−3x+18,
    解得x=,
    ∴OQ=;
    ∵N的横坐标为t,
    ∴OK=t,
    ∴OQ=OK+KQ=t+d,
    ∴=t+d,
    ∴d=;
    (3)作NW⊥AB垂足为W,
    ∴∠NWO=90°,
    ∵∠ACN=45°+∠ACO,∠ANC=45°+∠NAO,
    ∵∠ACO=∠NAO,
    ∴∠ACN=∠ANC,
    ∴AC=AN,
    又∵∠ACO=∠NAO,∠AOC=∠NOW=90°,
    ∴△ANW≌△CAO(AAS),
    ∴AO=NW=2,
    ∴WB=NW=2,
    ∴OW=OB−WB=6−2=4,
    ∴N(4,2);
    延长NW到Y,使NW=WY,
    ∴△NFW≌△YFW(SAS)
    ∴NF=YF,∠NFW=∠YFW,
    又∵∠HFN=2∠NFO,
    ∴∠HFN=∠YFN,
    作NS⊥YF,
    ∵∠FH⊥NH,
    ∴∠H=∠NSF=90°,
    ∵FN=FN,
    ∴△FHN≌△FSN(AAS),
    ∴SF=FH=,NY=2+2=4,
    设YS=a,FY=FN=a+,
    在Rt△NYS和Rt△FNS中:NS2=NY2−YS2;NS2=FN2−FS2;NY2−YS2=FN2−FS2,
    ∴42−a2=(a+)2-()2,
    解得a=
    ∴FN=;
    在Rt△NWF中WF=,
    ∴FO=OW+WF=4+6=10,
    ∴F(10,0),
    ∴AW=AO+OW=2+4=6,
    ∴AW=FW,
    ∵NW⊥AF,
    ∴NA=NF,
    ∴∠NFA=∠NAF,
    ∵∠ACO=∠NAO,
    ∴∠NFA=∠ACO,
    设GF交y轴于点T,∠CTF=∠ACO+∠CGF=∠COF+∠GFO,
    ∴∠CGF=∠COF=90°,
    设FN的解析式为y=px+q (p≠0),把F(10,0)N(4,2)代入y=px+q
    得,解得,
    ∴,
    ∴联立,解得:,
    ∴,
    把G点代入y=mx+3,得,得m=,
    ∴y=x+3,
    令y=0得0=x+3,x=4,
    ∴R(4,0),
    ∴AR=AO+OR=2+4=6,RF=OF−OR=10−4=6,
    ∴AR=RF,
    ∵FE∥AC,
    ∴∠FEG=∠AGE,∠GAF=∠EFA,
    ∴△GRA≌△EFR(AAS),
    ∴EF=AG,
    ∴四边形AGFE为平行四边形,
    ∵∠AGF=180°−∠CGF=180°−90°=90°,
    ∴平行四边形AGFE为矩形.
    本题是一次函数的综合题;灵活应用全等三角形的判定和性质以及勾股定理,熟练掌握平行四边形和矩形的判定,会待定系数法求函数解析式是解题的关键.
    15、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.
    【解析】
    (1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;
    (2)根据总利润每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
    【详解】
    (1)设y与x之间的函数关系式为y=kx+b,
    将(22.6,34.8)、(24,32)代入y=kx+b,
    ,解得:,
    ∴y与x之间的函数关系式为y=﹣2x+1.
    当x=23.5时,y=﹣2x+1=2.
    答:当天该水果的销售量为2千克.
    (2)根据题意得:(x﹣20)(﹣2x+1)=150,
    解得:x1=35,x2=3.
    ∵20≤x≤32,
    ∴x=3.
    答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.
    本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.
    16、(1)二次函数取得最小值-1;(2)或;
    (3)或.
    【解析】
    (1)当b=2,c=-3时,二次函数的解析式为,把这个解析式化为顶点式利用二次函数的性质即可求最小值.
    (2)当c=5时,二次函数的解析式为,又因函数值y=1的情况下,只有一个自变量x的值与其对应,说明方程有两个相等的实数根,利用即可解得b值,从而求得函数解析式.
    (3)当c=b2时,二次函数的解析式为,它的图象是开口向上,对称轴为的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即<b;②对称轴位于b≤x≤b+3这个范围时,即b≤≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即>b+3,根据列出的不等式求得b的取值范围,再根据x的取值范围b≤x≤b+3、函数的增减性及对应的函数值y的最小值为21可列方程求b的值(不合题意的舍去),求得b的值代入也就求得了函数的表达式.
    【详解】
    解:(1)当b=2,c=-3时,二次函数的解析式为,即.
    ∴当x=-1时,二次函数取得最小值-1.
    (2)当c=5时,二次函数的解析式为.
    由题意得,方程有两个相等的实数根.
    有,解得,
    ∴此时二次函数的解析式为或.
    (3)当c=b2时,二次函数的解析式为.
    它的图象是开口向上,对称轴为的抛物线.
    ①若<b时,即b>0,
    在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而增大,
    故当x=b时,为最小值.
    ∴,解得,(舍去).
    ②若b≤≤b+3,即-2≤b≤0,
    当x=时,为最小值.
    ∴,解得(舍去),(舍去).
    ③若>b+3,即b<-2,
    在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而减小,
    故当x=b+3时,为最小值.
    ∴,即
    解得(舍去),.
    综上所述,或b=-1.
    ∴此时二次函数的解析式为或.
    考点:二次函数的综合题.
    17、见解析;,证明见解析
    【解析】
    (1)由旋转性质知∠BPN=∠CPD,再由∠PCD+∠BCP=∠PBN+∠BCP=90°知∠PCD=∠PBN,从而得证;
    (2)先证△MPB∽△BPC得再由△PBN∽△PCD知从而得根据BC=CD可得答案.
    【详解】
    证明:由旋转可得.
    四边形是正方形,



    证明:

    由可知
    本题考查的是相似三角形的综合问题,解题的关键是掌握旋转变换的性质、相似三角形的判定与性质及正方形的性质等知识点,熟练掌握相关知识是解题的关键.
    18、证明见解析
    【解析】
    (1)由菱形的性质可证明∠BOA=90°,然后再证明四边形AEBO为平行四边形,从而可证明四边形AEBO是矩形;
    (2)依据矩形的性质可得到EO=BA,然后依据菱形的性质可得到AB=CD.
    【详解】
    (1)四边形AEBO是矩形.
    证明:∵BE∥AC,AE∥BD,
    ∴四边形AEBO是平行四边形.
    又∵菱形ABCD对角线交于点O,
    ∴AC⊥BD,即∠AOB=90°.
    ∴四边形AEBO是矩形.
    (2)∵四边形AEBO是矩形,
    ∴EO=AB,
    在菱形ABCD中,AB=DC.
    ∴EO=DC.
    本题主要考查的是菱形的性质判定、矩形的性质和判定,熟练掌握相关图形的性质是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=2x+1.
    【解析】
    由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,
    故答案为y=2x+1.
    20、24
    【解析】∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,
    ∴口袋中白色球的个数很可能是(1-15%-45%)×60=24个.
    21、乙
    【解析】
    试题分析:从图中看到,乙的波动比甲的波动小,故乙的产量稳定.故填乙.
    考点:方差;折线统计图.
    点评:本题要求了解方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    22、1
    【解析】
    利用平方差公式即可计算.
    【详解】
    原式.
    故答案为:1.
    本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
    23、x<-2
    【解析】
    观察函数图象得到当x<-2时,y=kx+2的图象位于y=mx-1的下方,即kx+2<mx-1.
    【详解】
    解:∵观察图象知当<>-2时,y=kx+2的图象位于y=mx-1的下方,
    根据图象可知不等式kx+2<mx-1的解集是x<-2,
    故答案为:x<-2.
    本题考查一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(1),四边形AMDN是矩形,见解析.
    【解析】
    (1)根据菱形的性质可得ND∥AM,再根据两直线平行,内错角相等可得∠NDE=∠MAE,∠DNE=∠AME,根据中点的定义求出DE=AE,然后利用“角角边”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=MA,然后利用一组对边平行且相等的四边形是平行四边形证明;
    (1)根据矩形的性质得到DM⊥AB,结合∠DAB=30°,由直角三角形30°角所对的直角边等于斜边的一半解答.
    【详解】
    (1)证明:∵四边形ABCD是菱形,
    ∴ND∥AM.
    ∴∠NDE=∠MAE,∠DNE=∠AME.
    ∵点E是AD中点,
    ∴DE=AE.
    在△NDE和△MAE中,

    ∴△NDE≌△MAE(AAS).
    ∴ND=MA.
    ∴四边形AMDN是平行四边形;
    (1)解:当AM=1时,四边形AMDN是矩形.理由如下:
    ∵四边形ABCD是菱形,
    ∴AD=AB=1,
    ∵平行四边形AMDN是矩形,
    ∴∠AMD=90°.
    ∵∠DAB=30°,
    ∴MD=AD=AB=1.
    在直角△AMD中,.
    本题考查了菱形的性质,平行四边形的判定,全等三角形的判定与性质,矩形的性质,熟记各性质并求出三角形全等是解题的关键,也是本题的突破口.
    25、4m
    【解析】
    试题分析:利用已知得出B′E的长,再利用勾股定理得出即可.
    解:由题意可得出:B′E=1.4﹣0.6=0.8(m),
    则AE=AB﹣0.8,
    在Rt△AEB中,
    AE2+BE2=AB2,
    ∴(AB﹣0.8)2+2.42=AB2
    解得:AB=4,
    答:秋千AB的长为4m.
    26、(1);(2)见解析
    【解析】
    (1)利用等腰直角三角形的性质及勾股定理求AB和AE的长,然后根据矩形的性质求得CD和ED的长,从而利用勾股定理求解;
    (2)延长交的延长线于,利用AAS定理证得,得到,,然后求得,从而使问题得解.
    【详解】
    解:(1)∵矩形,∴
    又∵

    设,在中,

    解得:,(舍)

    ∵矩形∴,

    在中,,
    ∴;
    (2)如答图,延长交的延长线于
    ∵,∴
    又∵为的中点,∴
    在和中

    ∴,
    ∵,




    本题考查矩形的性质,勾股定理解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,有一定的综合性,掌握相关性质定理正确推理论证是解题关键.
    题号





    总分
    得分
    批阅人
    销售量y(千克)

    34.8
    32
    29.6
    28

    售价x(元/千克)

    22.6
    24
    25.2
    26

    相关试卷

    南充市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】:

    这是一份南充市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届云南省昆明市实验中学九上数学开学教学质量检测模拟试题【含答案】:

    这是一份2025届云南省昆明市实验中学九上数学开学教学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】:

    这是一份2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map