长沙市2024-2025学年数学九上开学达标检测试题【含答案】
展开
这是一份长沙市2024-2025学年数学九上开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)正方形具有而菱形不一定具有的性质是 ( )
A.对角线相等B.对角线互相垂直平分
C.四条边相等D.对角线平分一组对角
2、(4分)如果一个三角形三条边的长分别是7,24,25,则这个三角形的最大内角的度数是( )
A.30°B.45°C.60°D.90°
3、(4分)如图,在框中解分式方程的4个步骤中,根据等式基本性质的是( )
A.①③B.①②C.②④D.③④
4、(4分)以下列各组数为三角形的边长,能构成直角三角形的是( )
A.1,2,3B.1,1,C.2,4,5D.6,7,8
5、(4分)若样本x1+1,x2+1,…,xn+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,xn+2,下列结论正确的是( )
A.平均数为10,方差为2B.平均数为11,方差为3
C.平均数为11,方差为2D.平均数为12,方差为4
6、(4分)已知,则有( )
A.B.C.D.
7、(4分)故宫是世界上现存规模最大,保存最完整的宫殿建筑群.下图是利用平面直角坐标系画出的故宫的主要建筑分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向,建立平面直角坐标系,有如下四个结论:
①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5);
②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,3);
③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,1);
④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6).上述结论中,所有正确结论的序号是( )
A.①②B.①③C.①④D.②③
8、(4分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=,则BC的长是( )
A.B.2C.2D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)菱形的两条对角线长分别是方程的两实根,则菱形的面积为______.
10、(4分)如图已知四边形ABCD中,AB=CD,AB//CD要使四边形ABCD是菱形,应添加的条件是_____________________________(只填写一个条件,不使用图形以外的字母).
11、(4分)已知关于的方程的一个根为,则实数的值为( )
A.B.C.D.
12、(4分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为________________.
13、(4分)在射击比赛中,某运动员的1次射击成绩(单位:环)为:7,8,10,8,9,1.计算这组数据的方差为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)抛物线y=x2+bx+c的对称轴为直线x=1,该抛物线与x轴的两个交点分别为A和B,与y轴的交点为C,其中A(-1,0).
(1)写出B点的坐标 ;
(2)求抛物线的函数解析式;
(3)若抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;
(4)点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.
15、(8分)当k值相同时,我们把正比例函数与反比例函数叫做“关联函数”.
(1)如图,若k>0,这两个函数图象的交点分别为A,B,求点A,B的坐标(用k表示);
(2)若k=1,点P是函数在第一象限内的图象上的一个动点(点P不与B重合),设点P的坐标为(),其中m>0且m≠2.作直线PA,PB分别与x轴交于点C,D,则△PCD是等腰三角形,请说明理由;
(3)在(2)的基础上,是否存在点P使△PCD为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
16、(8分)如图:在▱ABCD中,E、F分别为对角线BD上的点,且BE=DF,判断四边形AECF的形状,并说明理由.
17、(10分)如图,一块铁皮(图中阴影部分),测得,,,,.求阴影部分面积.
18、(10分)如图,在直角坐标系中,OA=3,OC=4,点B是y轴上一动点,以AC为对角线作平行四边形ABCD.
(1)求直线AC的函数解析式;
(2)设点B(0,m),记平行四边形ABCD的面积为S,请写出S与m的函数关系式,并求当BD取得最小值时,函数S的值;
(3)当点B在y轴上运动,能否使得平行四边形ABCD是菱形?若能,求出点B的坐标;若不能,说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,平行四边形ABCD的周长为20,对角线AC、BD交于点O,E为CD的中点,BD=6,则△DOE的周长为 _________ .
20、(4分)计算: =_______________.
21、(4分)一个多边形的每个外角都是,则这个多边形的边数是________.
22、(4分)如图,在平面直角坐标系中,菱形的边在轴上,与交于点(4,2),反比例函数的图象经过点.若将菱形向左平移个单位,使点落在该反比例函数图象上,则的值为_____________.
23、(4分)若,则的值为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在四边形ABCD中,∠ADC=90°,AB=AC,E,F分别为AC,BC的中点,连接EF,ED,FD.
(1)求证:ED=EF;
(2)若∠BAD=60°,AC平分∠BAD,AC=6,求DF的长.
25、(10分)某公司招聘职员两名,对甲乙丙丁四名候选人进行笔试和面试,各项成绩均为100分,然后再按笔试70%、面试30%计算候选人综合成绩(满分100分)各项成绩如下表所示:
(1)直接写出四名候选人面试成绩中位数;
(2)现得知候选人丙的综合成绩为87.2分,求表中x的值;
(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要聘请的前两名的人选.
26、(12分)如图,在平面直角坐标系,已知四边形是矩形,且(0,6),(8,0),若反比例函数的图象经过线段的中点,交于点,交于点.设直线的解析式为.
(1)求反比例函数和直线的解析式;
(2)求的面积:
(3)请直接写出不等式的解集.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据正方形和菱形的性质可以判断各个选项是否正确.
【详解】
解:正方形的对角线相等,菱形的对角线不相等,故A符合题意;
正方形和菱形的对角线都互相垂直平分,故B不符合题意;
正方形和菱形的四条边都相等,故C不符合题意;
正方形和菱形的对角线都平分一组对角,故D不符合题意,
故选:A.
本题考查正方形和菱形的性质,解答本题的关键是熟练掌握基本性质.
2、D
【解析】
根据勾股定理逆定理可得此三角形是直角三角形,进而可得答案.
【详解】
解:∵72+242=252,
∴此三角形是直角三角形,
∴这个三角形的最大内角是90°,
故选D.
此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
3、A
【解析】
根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质1,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.
【详解】
①根据等式的性质1,等式的两边都乘同一个不为零的整式x﹣1,结果不变;
②根据去括号法则;
③根据等式的性质1,等式的两边都加同一个整式3﹣x,结果不变;
④根据合并同类项法则.
根据等式基本性质的是①③.
故选A.
本题考查了等式的性质,利用了等式的性质1,等式的性质1.
4、B
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、12+22≠32,故不是直角三角形,故此选项错误;
B、12+12=()2,故是直角三角形,故此选项正确;
C、22+42≠52,故不是直角三角形,故此选项错误;
D、62+72≠82,故不是直角三角形,故此选项错误.
故选B.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
5、C
【解析】
分析:利用样本的平均数和方差的公式计算,即可得到结果.
详解:因为样本的平均数是,方差为,
∴,即,
方差
则 ,样本的方差为,故选C.
点睛:本题主要考查了数据的平均数与方差的计算,其中熟记样本数据的平均数和方差的公式是解答的关键,着重考查了推理与运算能力.
6、A
【解析】
求出m的值,求出2)的范围5<m<6,即可得出选项.
【详解】
m=(-)×(-2),
=,
=×3=2
=,
∵,
∴5<<6,
即5<m<6,
故选A.
本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<
<6,题目比较好,难度不大.
7、C
【解析】
根据各结论所给两个点的坐标得出原点的位置及单位长度从而得到答案.
【详解】
①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5),正确;
②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,2.5),错误;
③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,2),错误;
④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6),正确,
故选:C.
此题考查平面直角坐标系中用点坐标确定具体位置,由给定的点坐标确定原点及单位长度是解题的关键.
8、B
【解析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.
【详解】
∵四边形ABCD是平行四边形,
∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
∴BC=AD==1.
故选:B.
本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.
点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.
10、ACBD,或AB=AD(答案不唯一)
【解析】
【分析】首先根据AB∥CD,AB=CD可得四边形ABCD是平行四边形,再根据一组邻边相等的平行四边形是菱形可得添加条件AD=AB.也可以根据对角线互相垂直的平行四边形是菱形添加条件ACBD.
【详解】可添加的条件为AD=AB,
∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴四边形ABCD为菱形,
故答案为:AB=AD(答案不唯一).
【点睛】本题考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
11、A
【解析】
根据一元二次方程的根的定义,将根代入进行求解.
【详解】
∵x=−2是方程的根,由一元二次方程的根的定义,可得(−2)2+2k−6=0,
解此方程得到k=1.
故选:A.
考查一元二次方程根的定义,使方程左右两边相等的未知数的值就是方程的解,又叫做方程的根.
12、1.
【解析】
∵△ABC沿射线BC方向平移2个单位后得到△DEF,
∴DE=AB=1,CE=BC−BE=6−2=1,
∵∠B=∠DEC=60°,
∴△DEC是等边三角形,
∴DC=1,
故答案为1.
本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.
13、
【解析】
试题分析:先计算平均数所以方差为
考点:方差;平均数
三、解答题(本大题共5个小题,共48分)
14、(1)B(3,0);(2)y=x2−2x−3;(3)P(6,21)或(−6,45);(4).
【解析】
(1)函数的对称轴为:x=1,点A(−1,0),则点B(3,0);
(2)用两点式求解即可;
(3)△POC的面积是△BOC的面积的2倍,则|xP|=2OB=6,即可求解;
(4)易得直线BC的表达式,设出点M(x,x−3),则可得MD=x−3−(x2−2x−3)=−x2+3x,然后求二次函数的最值即可.
【详解】
解:(1)函数的对称轴为:x=1,点A(−1,0),则点B(3,0),
故答案为(3,0);
(2)函数的表达式为:y=(x+1)(x−3)=x2−2x−3;
(3)△POC的面积是△BOC的面积的2倍,则|xP|=2OB=6,
当x=6时,y=36−12−3=21,
当x=−6时,y=36+12−3=45,
故点P(6,21)或(−6,45);
(4)∵B(3,0),C(0,-3),
易得直线BC的表达式为:y=x−3,
设点M(x,x−3),则点D(x,x2−2x−3),
∴MD=x−3−(x2−2x−3)=−x2+3x,
∵−1<0,
∴MD有最大值,
∴当x=时,其最大值为:.
本题考查的是二次函数综合运用,涉及到待定系数法求函数解析式,图形的面积计算以及二次函数的最值问题等,难度不大,熟练掌握相关知识点即可解答.
15、(1)点A坐标为(-k,-1),点B坐标(k,1);(2)△PCD是等腰三角形;,理由见解析;(3)不存在,理由见解析.
【解析】
(1)联立两个函数解析式即可;
(2)先求出点C和点D的坐标,然后根据两点距离公式得到PC=PD即可;
(3)过点P作PH⊥CD于H,根据等腰直角三角形的性质可得CD=2PH,可求m的值;然后再点P不与B重合即可解答.
【详解】
解:(1)∵两个函数图象的交点分别为点A和点B,
∴,解得:或
∴点A坐标为(-k,-1),点B坐标(k,1);
(2)△PCD是等腰三角形,理由如下:
∵k=1
∴点A和点B的坐标为(-1,-1)和(1,1),
设点P的坐标为(m,)
∴直线PA解析式为:
∵当y=0时,x=m-1,
∴点C的坐标为(m-1,0)
同理可求直线PB解析式为:
∵当y=0时,x=m+1,
∴点D的坐标为(m+1,0)
∴,
∴PC=PD
∴△PCD是等腰三角形;
(3)如图:过点P作PH⊥CD于H
∵△PCD直角三角形,PH⊥CD,
∴CD=2PH,
∴m+1-(m-1)=2×,解得m=1
∴点P的坐标为(1,1),
∵点B(1,1)与点函数在第一象限内的图象上的一个动点P不重合
∴不存在点P使△PCD为直角三角形.
本题属于反比例函数综合题,主要考查了反比例函数的性质、等腰直角三角形的性质、两点距离公式等知识点,掌握反比例函数的性质是解答本题的关键.
16、证明见解析
【解析】
分析:
如下图,连接AC,由已知条件易得:OA=OC、OB=OD,结合BE=DF可得OE=OF,由此可得四边形AECF是平行四边形.
详解:
连接AC,与BD相交于O,如图所示:
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵BE=DF,
∴OE=OF,
∴AC与EF互相平分,
∴四边形AECF为平行四边形.
点睛:熟记:“平行四边形的对角线互相平分和对角线互相平分是四边形是平行四边形”是解答本题的关键.
17、24
【解析】
连接AC,首先利用勾股定理的逆定理判断三角形ABC和三角形ACD的形状,再根据阴影部分的面积等于三角形ACD的面积减去三角形ABC的面积即可.
【详解】
连接AC,在中,根据勾股定理,.
.
.
.
.
本题主要考查三角形的勾股定理和勾股定理的逆定理的应用,特别注意三角形逆定理的应用.
18、(1);(2) ①当m≤4时,S=-3m+12,②当m>4时,S=3m-12(3)(0,)
【解析】
(1)根据OA、OC的长度求出A、C坐标,再利用待定系数法求解即可;
(2)根据点B的坐标可得出BC的长,结合平行四边形的面积公式求出S与m的关系式,再根据AD∥y轴即可求出当BD最短时m的值,将其代入解析式即可;
(3)根据菱形的性质找出m的值,从而根据勾股定理求解即可.
【详解】
解:(1)∵OA=3,OC=4,
∴A(-3,0)、C(0,4).
设直线AC的函数解析式为y=kx+b,
将点A(-3,0)、C(0,4)代入y=kx+b中,
得:,解得:,
∴直线AC的函数解析式为:.
(2)∵点B(0,m),四边形ABCD为以AC为对角线的平行四边形,
∴m≤4,BC=4-m,
∴S=BC•OA=-3m+12(m≤4).
同法m>4时,S=3m-12(m>4).
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴当BD⊥y轴时,BD最小(如图1).
∵AD∥OB,AO⊥OB,DA⊥OB,
∴四边形AOBD为矩形,
∴AD=OB=BC,
∴点B为OC的中点,即,
此时S=-3×2+12=1.
∴S与m的函数关式为S=-3m+12(m<4),当BD取得最小值时的S的值为1.
(3)存在
当AB=CB时,平行四边形ABCD为菱形.
理由如下:
∵平行四边形ABCD是菱形,
∴AB=BC.
,
,
解得:,
.
本题考查了待定系数法求函数解析式、平行四边形的性质、菱形的性质以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形的面积公式找出S关于m的函数关系式;(3)学会构建方程解决问题;
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
试题分析:∵▱ABCD的周长为20cm,
∴2(BC+CD)=20,则BC+CD=2.
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=6,
∴OD=OB=BD=3.
又∵点E是CD的中点,
∴OE是△BCD的中位线,DE=CD,
∴OE=BC,
∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=5+3=1,
即△DOE的周长为1.
故答案是1.
考点:三角形中位线定理.
20、1
【解析】
根据实数的性质化简即可求解.
【详解】
=1+2=1
故答案为:1.
此题主要考查实数的运算,解题的关键是熟知零指数幂与负指数幂的运算.
21、
【解析】
正多边形的外角和是360°,而每个外角是18°,即可求得外角和中外角的个数,即多边形的边数.
【详解】
设多边形边数为n,
于是有18°×n=360°,
解得n=20.
即这个多边形的边数是20.
本题考查多边形内角和外角,熟练掌握多边形的性质及计算法则是解题关键.
22、1
【解析】
根据菱形的性质得出CD=AD,BC∥OA,根据D (4,2)和反比例函数的图象经过点D求出k=8,C点的纵坐标是2×2=4,求出C的坐标,即可得出答案.
【详解】
∵四边形ABCO是菱形,
∴CD=AD,BC∥OA,
∵D (4,2),反比例函数的图象经过点D,
∴k=8,C点的纵坐标是2×2=4,
∴,
把y=4代入得:x=2,
∴n=3−2=1,
∴向左平移1个单位长度,反比例函数能过C点,
故答案为:1.
本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.
23、
【解析】
根据比例设a=2k,b=3k,然后代入比例式进行计算即可得解.
【详解】
∵,
∴设a=2k,b=3k,
∴ .
故答案为:
此题考查比例的性质,掌握运算法则是解题关键
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)3.
【解析】
(1)根据题意只要证明EF为△ABC的中位线,即可证明DE=EF.
(2)只要证明为直角三角形,根据勾股定理即可计算DF的长
【详解】
(1)证明:∵∠ADC=90°,E为AC的中点,
∴DE=AE=AC.
∵E、F分别为AC、BC的中点,
∴EF为△ABC的中位线,
∴EF=AB.
∵AB=AC,
∴DE=EF.
(2)解:∵∠BAD=60°,AC平分∠BAD,
∴∠BAC=∠DAC=∠BAD=30°.
由(1)可知EF∥AB,AE=DE,
∴∠FEC=∠BAC=30°,∠DEC=2∠DAC=60°,
∴∠FED=90°.
∵AC=6,
∴DE=EF=3,
∴DF= =3 .
本题主要考查等腰三角形的性质,这是考试的重点知识,应当熟练掌握.
25、(1)89分;(2)86;(3)甲的综合成绩: 89.4分,乙的综合成绩: 86.4分,丁的综合成绩为87.4分,以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.
【解析】
(1)根据中位数的意义,将四个数据排序后,处在第2、3位的两个数的平均数即为中位数,
(2)根据加权平均数的计算方法,列方程求解即可,
(3)依据加权平均数的计算方法,分别计算甲、乙、丁的综合成绩,最后比较产生前两名的候选人.
【详解】
解:(1)面试成绩排序得:86,88,90,92,处在第2、3位两个数的平均数为(88+90)÷2=89,因此中位数是89,
答:四名候选人的面试成绩的中位数是89分;
(2)由题意得:70%x+90×30%=87.2,
解得:x=86,
答:表格中x的值为86;
(3)甲的综合成绩:90×70%+88×30%=89.4分,乙的综合成绩:84×70%+92×30%=86.4分,
丁的综合成绩为:88×70%+86×30%=87.4分,
处在综合成绩前两位的是:甲、丁.
∴以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.
本题考查中位数、加权平均数的计算方法,掌握中位数的概念、加权平均数的计算公式是解题的关键.
26、(1),;(2)22.5;(3)或
【解析】
(1)由点B、D的坐标结合矩形的性质即可得出点C的坐标,由中点的性质即可得出点A的坐标,再结合反比例函数图象上点的坐标特征即可得出k值,由此即可得出反比例函数解析式;由点F的横坐标、点E的纵坐标结合反比例函数解析式即可得出点E、F的坐标,再由点E、F的坐标利用待定系数法即可求出直线EF的解析式;
(2)通过分割图形并利用三角形的面积公式即可求出结论;
(3)观察函数图象,根据两函数图象的上下关系结合交点坐标即可得出不等式的解集.
【详解】
(1):(0,6),(8,0)∴(8,6)∴中点(4,3)∴∴
∴
设,
∴∴,∴,
∴∴,,∴
(2)
=22.5
(3)根据图像可得或.
本题考查了矩形的性质、反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求函数解析式以及三角形的面积公式,本题属于基础题难度不大,解决该题型题目时,求出点的坐标,再结合点的坐标利用待定系数法求出函数解析式是关键.
题号
一
二
三
四
五
总分
得分
候选人
笔试成绩
面试成绩
甲
90
88
乙
84
92
丙
x
90
丁
88
86
相关试卷
这是一份山东省冠县联考2024-2025学年九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份宁夏银川十五中2024-2025学年数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南长沙市北雅中学2024年九上数学开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。