浙江省杭州市启正中学2024-2025学年数学九年级第一学期开学统考试题【含答案】
展开
这是一份浙江省杭州市启正中学2024-2025学年数学九年级第一学期开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为( )
A.(3,3)B.(4,3)C.(﹣1,3)D.(3,4)
2、(4分)下列不等式的变形中,不正确的是( )
A.若,则B.若,则
C.若,则D.若,则
3、(4分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F,若四边形DCFE的周长为18cm,AC的长6cm,则AD的长为( )
A.13cmB.12cmC.5cmD.8cm
4、(4分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是( )
A.B.C.D.
5、(4分)已知不等式ax+b>0的解集是x<-2,则函数y=ax+b的图象可能是( )
A.B.
C.D.
6、(4分)已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b>1的解集为( )
A.x<0B.x>0C.x<2D.x>2
7、(4分)为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表.关于这10户家庭的月用电量说法正确的是( )
A.中位数是40B.众数是4C.平均数是20.5D.极差是3
8、(4分)下列命题是真命题的是( )
A.将点A(﹣2,3)向上平移3个单位后得到的点的坐标为(1,3)
B.三角形的三条角平分线的交点到三角形的三个顶点的距离相等
C.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等
D.平行四边形的对角线相等
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若最简二次根式与能合并成一项,则a=_____.
10、(4分) 如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=6,则AB的长为_____.
11、(4分)某次越野跑中,当小明跑了1600m时,小刚跑了1400m,小明和小刚在此后时间里所跑的路程y(m)与时间t(s)之间的函数关系如图所示,则这次越野跑全程为________ m.
12、(4分)如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为________.
13、(4分)如图 , 在 射 线 OA、OB 上 分 别 截 取 OA1、OB1, 使 OA1 OB1;连接 A1B1 , 在B1 A1、B1B 上分别截取 B1 A2、B1B2 ,使 B1 A2B1B2 ,连接 A2 B2;……依此类推,若A1B1O,则 A2018 B2018O =______________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值(1)已知,求的值.
(2)当时,求的值.
15、(8分)因式分解:.
16、(8分)如图,在▱ABCD中,AB=6,AC=10,BD=16,求△COD的周长.
17、(10分)随着人们环保意识的增强,越来越多的人选择低碳出行,各种品牌的山地自行车相继投放市场.顺风车行五月份型车的销售总利润为元,型车的销售总利润为元.且型车的销售数量是型车的倍,已知销售型车比型车每辆可多获利元.
(1)求每辆型车和型车的销售利润;
(2)若该车行计划一次购进两种型号的自行车共台且全部售出,其中型车的进货数量不超过型车的倍,则该车行购进型车、型车各多少辆,才能使销售总利润最大?最大销售总利润是多少?
18、(10分)先化简,再求的值,其中x=2
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,把矩形ABCD沿EF翻转,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是
20、(4分)一组数据﹣1,0,1,2,3的方差是_____.
21、(4分)如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.
22、(4分)已知,则=_____.
23、(4分)在△ABC中,D,E分别为AC,BC的中点,若DE=5,则AB=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形ABCD中,E、F分别为AB、BC的中点,连接CE、DF,将△CBE沿CE对折,得到△CGE,延长EG交CD的延长线于点H。
(1)求证:CE⊥DF;
(2)求的值.
25、(10分)如图,在▱ABCD中,各内角的平分线分别相交于点E,F,G,H.
(1)求证:△ABG≌△CDE;
(2)猜一猜:四边形EFGH是什么样的特殊四边形?证明你的猜想;
(3)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.
26、(12分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:
(1)当参加老师的人数为多少时,两家旅行社收费相同?
(2)求出y1、y2关于x的函数关系式?
(3)如果共有50人参加时,选择哪家旅行社合算?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
令x=0,y=6,∴B(0,6),
∵等腰△OBC,∴点C在线段OB的垂直平分线上,
∴设C(a,3),则C '(a-5,3),
∴3=3(a-5)+6,解得a=4,
∴C(4,3).
故选B.
点睛:掌握等腰三角形的性质、函数图像的平移.
2、D
【解析】
根据不等式的基本性质进行判断。
【详解】
A. ∴,故A正确;
B. ,在不等式两边同时乘以(-1)则不等号改变,∴,故B正确;
C. ,在不等式两边同时乘以(-3)则不等号改变,∴,故C正确;
D. ,在不等式两边同时除以(-3)则不等号改变,∴,故D错误
所以,选项D不正确。
主要考查了不等式的基本性质:
1、不等式两边同时加(或减去)同一个数(或式子),不等号方向不变;
2、不等式两边同时乘以(或除以)同一个正数,不等号方向不变;
3、不等式两边同时乘以(或除以)同一个负数,不等号方向改变。
3、C
【解析】
由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形,根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=18-AB,然后根据勾股定理即可求得.
【详解】
∵D、E分别是AB、AC的中点,F是BC延长线上的一点,
∴ED是Rt△ABC的中位线,
∴ED∥FC.BC=2DE,
又 EF∥DC,
∴四边形CDEF是平行四边形;
∴DC=EF,
∵DC是Rt△ABC斜边AB上的中线,
∴AB=2DC,
∴四边形DCFE的周长=AB+BC,
∵四边形DCFE的周长为18cm,AC的长6cm,
∴BC=18﹣AB,
∵在Rt△ABC中,∠ACB=90°,
∴AB2=BC2+AC2,即AB2=(18﹣AB)2+62,
解得:AB=10cm,
∴AD=5cm,
故选C.
本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.
4、A
【解析】
根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.
【详解】
解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,
∴k<0,
∵一次函数y=x+k的一次项系数大于0,常数项小于0,
∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.
故选:A.
本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).
5、A
【解析】
根据一次函数与一元一次不等式的关系,得到当x<-2时,直线y=ax+b的图象在x轴上方,然后对各选项分别进行判断.
【详解】
解:∵不等式ax+b>0的解集是x<-2,
∴当x<-2时,函数y=ax+b的函数值为正数,即直线y=ax+b的图象在x轴上方.
故选:A.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
6、A
【解析】
根据图形得出k<0和直线与y轴交点的坐标为(0,1),即可得出不等式的解集.
【详解】
∵从图象可知:k<0,直线与y轴交点的坐标为(0,1),
∴不等式kx+b>1的解集是x<0,
故选A.
考查了一次函数与一元一次不等式,能根据图形读出正确信息是解此题的关键.
7、A
【解析】
试题分析:根据中位数、众数、加权平均数和极差的定义和计算公式分别对每一项进行分析,即可得出答案.A、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;D、这组数据的极差是:60﹣25=35,故本选项错误;故选A.
考点:1.极差;2.加权平均数;3.中位数;4.众数.
8、C
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解:A、将点A(-2,3)向上平移3个单位后得到的点的坐标为(-2,6),是假命题;B、三角形的三条角平分线的交点到三角形的三条边的距离相等,是假命题;C、三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等,是真命题;D、平行四边形的对角线互相平分,是假命题;故选:C.
本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理,难度适中.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.
【详解】
解:,
由最简二次根式与能合并成一项,得
a+2=2.
解得a=2.
故答案是:2.
本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
10、
【解析】
根据勾股定理得出S2+S1=S3,求出S3,即可求出AB.
【详解】
解:∵由勾股定理得:AC2+BC2=AB2,
∴S2+S1=S3,
∵S1=5,S2=6,
∴S3=11,
∴AB=,
故答案为:.
本题考查了勾股定理和正方形的性质,能求出S3的值是解此题的关键.
11、1
【解析】
根据函数图象可以列出相应的二元一次方程组,从而可以解答本题.
【详解】
设小明从1600处到终点的速度为a米/秒,小刚从1400米处到终点的速度为b米/秒,
由题意可得:小明跑了100秒后还需要200秒到达终点,而小刚跑了100秒后还需要100秒到达终点,则
,
解得:,
故这次越野跑的全程为:1600+300×2=1600+600=1(米),
即这次越野跑的全程为1米.
故答案为:1.
本题考查了一次函数的应用、二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组,利用数形结合的思想解答问题.
12、1
【解析】
试题分析:根据勾股定理得到AE==1,由平行线等分线段定理得到AE=BE=1,根据平移的性质即可得到结论.∵∠C=90°,AD=DC=4,DE=3, ∴AE==1, ∵DE∥BC, ∴AE=BE=1,
∴当点D落在BC上时,平移的距离为BE=1.
考点:平移的性质
13、
【解析】
分析:根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.
详解:∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O==α,∠A4B4O=α,∴∠AnBnO=α,∴A2018 B2018O =.
故答案为:.
点睛:本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的外角的度数,得到分母为2的指数次幂变化,分子不变的规律是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
(1) 先根据分式混合运算的法则把原式进行化简,再把代入进行计算即可; (2)先把分式进行化简计算,在化简时要注意运算顺序,然后再把x= 代入化简后的式子即可得到答案.
【详解】
(1)解:原式= (2分)=
==
当,原式==
(2)解:原式
当时,原式
本题考查的是分式的化简求值,分式化简求值时,先化简再把分式中未知数对应的值代入求出分式的值.
15、
【解析】
先提公因式xy,然后再采用公式法进行因式分解.
【详解】
解:原式=.
故答案为:
本题考查因式分解,因式分解的一般步骤为:先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适;熟练的记牢公式是解决此类题的关键.
16、19
【解析】
根据平行四边形的性质可知对角线相互平分,,推出 即可推出周长.
【详解】
∵四边形ABCD是平行四边形,
∴,OC=AC=,OD=,
∴的周长.
本题主要考查了平行四边的性质,熟知平行四边形的对角线相互平分是解题关键.
17、(1)每辆A型车的利润为1元,每辆B型车的利润为2元.(2)商店购进34台A型车和66台B型车,才能使销售总利润最大,最大利润是3元.
【解析】
(1)设每台A型车的利润为x元,则每台B型车的利润为(x+50)元,根据题意得×2; (2)设购进A型车a台,这100辆车的销售总利润为y元,据题意得,y=1a+2(100﹣a),即y=﹣50a+200,再由B型车的进货数量不超过A型车的2倍确定a的取值范围,然后可得最大利润.
【详解】
解:(1)设每台A型车的利润为x元,则每台B型车的利润为(x+50)元,
根据题意得×2,
解得x=1.
经检验,x=1是原方程的解,
则x+50=2.
答:每辆A型车的利润为1元,每辆B型车的利润为2元.
(2)设购进A型车a台,这100辆车的销售总利润为y元,
据题意得,y=1a+2(100﹣a),即y=﹣50a+200,
100﹣a≤2a,
解得a≥33,
∵y=﹣50a+200,
∴y随a的增大而减小,
∵a为正整数,
∴当a=34时,y取最大值,此时y=﹣50×34+200=3.
即商店购进34台A型车和66台B型车,才能使销售总利润最大,最大利润是3元.
根据题意列出分式方程和不等式.理解题意,弄清数量关系是关键.
18、 , .
【解析】
首先把分式利用通分、约分化简,然后代入数值计算即可求解.
【详解】
解:
=
=
= ,
当x=3时,原式= = .
本题考查分式的化简求值,熟练掌握分式的运算法则是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
试题分析:
【分析】如图,连接BE,
∵在矩形ABCD中,AD∥BC,∠EFB=60°,
∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.
∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.
∴∠AEB=∠AEF-∠BEF=120°-60°="60°." ∴∠ABE=30°.
∴在Rt△ABE中,AB= 2.
∵AE=2,DE=6,∴AD=AE+DE=2+6=8.
∴矩形ABCD的面积=AB•AD=2×8=16.
故选D.
考点:1.翻折变换(折叠问题);2.矩形的性质;3.平行的性质;4.含30度直角三角形的性质.
20、1
【解析】
这组数据的平均数为:(-1+1+0+1+3)÷5=1,所以方差=[(-1-1)1+(0-1)1+(1-1)1+(1-1)1+(3-1)1]=1.
21、1或1或1
【解析】
分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.
【详解】
如图1,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OB=1,
又∵∠AOC=∠BOM=60°,
∴△BOM是等边三角形,
∴BM=BO=1,
∴Rt△ABM中,AM==;
如图2,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OA=1,
又∵∠AOC=60°,
∴△AOM是等边三角形,
∴AM=AO=1;
如图3,当∠ABM=90°时,
∵∠BOM=∠AOC=60°,
∴∠BMO=30°,
∴MO=2BO=2×1=8,
∴Rt△BOM中,BM==,
∴Rt△ABM中,AM==.
综上所述,当△ABM为直角三角形时,AM的长为或或1.故答案为或或1.
22、-
【解析】
∵,
∴可设:,
∴.
故答案为.
23、1.
【解析】
根据三角形中位线定理解答即可.
【详解】
∵D,E分别为AC,BC的中点,
∴AB=2DE=1,
故答案为:1.
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2).
【解析】
(1)运用△BCE≌Rt△CDF(SAS),再利用角的关系求得∠CKD=90°即可解题.
(2)设正方形ABCD的边长为2a,设CH=x,利用勾股定理求出a与x之间的关系即可解决问题.
【详解】
(1)证明:设EC交DF于K.
∵E,F分别是正方形ABCD边AB,BC的中点,
∴CF=BE,
在Rt△BCE和Rt△CDF中,
,
∴△BCE≌Rt△CDF(SAS),
∠BCE=∠CDF,
又∵∠BCE+∠ECD=90°,
∴∠CDF+∠ECD=90°,
∴∠CKD=90°,
∴CE⊥DF.
(2)解:设正方形ABCD的边长为2a.
EB=EG,∠BEC=∠CEG,∠EGC=∠B=90°
∵CD∥AB,
∴∠ECH=∠BEC,∴∠ECH=∠CEH,
∴EH=CH,
∵BE=EG=a,CD=CG=2a,
在Rt△CGH中,设CH=x,
∴x2=(x-a)2+(2a)2,
∴x=a,
∴GH=EH-EG=a-a=a,
∴.
本题考查的是旋转变换、翻折变换、正方形的性质、全等三角形的判定与性质等知识,熟知旋转、翻折不变性是解答此题的关键,学会构建方程解决问题.
25、(1)证明见解析;(2)矩形;(3).
【解析】
试题分析:(1)根据角平分线的定义以及平行四边形的性质,即可得到AB=CD,∠BAG=∠DCE,∠ABG=∠CDE,进而判定△ABG≌△CDE;
(2)根据角平分线的定义以及平行四边形的性质,即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,进而判定四边形EFGH是矩形;
(3)根据含30°角的直角三角形的性质,得到BG,AG,BF,CF,进而得出EF和GF的长,可得四边形EFGH的面积.
试题解析:解:(1)∵GA平分∠BAD,EC平分∠BCD,∴∠BAG=∠BAD,∠DCE=∠DCB,∵▱ABCD中,∠BAD=∠DCB,AB=CD,∴∠BAG=∠DCE,同理可得,∠ABG=∠CDE,在△ABG和△CDE中,∵∠BAG=∠DCE,AB=CD,∠ABG=∠CDE,∴△ABG≌△CDE(ASA);
(2)四边形EFGH是矩形.
证明:∵GA平分∠BAD,GB平分∠ABC,∴∠GAB=∠BAD,∠GBA=∠ABC,∵▱ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA=(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得,∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;
(3)依题意得,∠BAG=∠BAD=30°,∵AB=6,∴BG=AB=3,AG==CE,∵BC=4,∠BCF=∠BCD=30°,∴BF=BC=2,CF=,∴EF=﹣=,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF=.
点睛:本题主要考查了平行四边形的性质,矩形的判定以及全等三角形的判定与性质的运用,解题时注意:有三个角是直角的四边形是矩形.在判定三角形全等时,关键是选择恰当的判定条件.
26、(1)当参加老师的人数为30时,两家旅行社收费相同;(2)y2=40x+600;(3)如果共有50人参加时,选择乙家旅行社合算,理由见解析
【解析】
(1)根据函数图象和图象中的数据可以得到当参加老师的人数为多少时,两家旅行社收费相同;
(2)根据函数图象中的数据可以求得y1、y2关于x的函数关系式;
(3)根据函数图象可以得到如果共有50人参加时,选择哪家旅行社合算.
【详解】
解:(1)由图象可得,
当参加老师的人数为30时,两家旅行社收费相同;
(2)设y1关于x的函数关系式是y1=ax,
30a=1800,得a=60,
即y1关于x的函数关系式是y1=60x;
设y2关于x的函数关系式是y2=kx+b,
,得,
即y2关于x的函数关系式是y2=40x+600;
(3)由图象可得,
当x>50时,乙旅行社比较合算,
∴如果共有50人参加时,选择乙家旅行社合算.
本题考查一次函数的应用、方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
题号
一
二
三
四
五
总分
得分
月用电量(度)
25
30
40
50
60
户数
1
2
4
2
1
相关试卷
这是一份浙江省杭州市上城区建兰中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省杭州市临安区2025届数学九年级第一学期开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省杭州市杭州风帆中学2024-2025学年九年级数学第一学期开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。