浙江省湖州市吴兴区十校联考2025届九年级数学第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式中,正确的是( )
A.=﹣8B.﹣=﹣8C.=±8D.=±8
2、(4分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值与方差:
要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择( )
A.甲B.乙C.丙D.丁
3、(4分)如图,下列能判定AB∥CD的条件的个数是( )
①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠1.
A.1个B.2个C.3个D.4个
4、(4分)如图,直线的图象如图所示.下列结论中,正确的是( )
A.B.方程的解为;
C.D.若点A(1,m)、B(3,n)在该直线图象上,则.
5、(4分)若一个多边形的内角和等于720°,则这个多边形的边数是( )
A.5B.6C.7D.8
6、(4分)如图,平行四边形ABCD中,,点E为BC边中点,,则AE的长为 ( )
A.2cmB.3cmC.4cmD.6cm
7、(4分)满足下列条件的四边形不是正方形的是( )
A.对角线相互垂直的矩形B.对角线相等的菱形
C.对角线相互垂直且相等的四边形D.对角线垂直且相等的平行四边形
8、(4分)如图,已知,那么添加下列一个条件后,仍然无法判定的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当二次根式的值最小时,x=______.
10、(4分)若是一个正整数,则正整数m的最小值是___________.
11、(4分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式_____.
12、(4分)如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为_____,面积为_____.
13、(4分)如图,在四边形ABCD中,AB=BC=2,CD=1,AD=3,若∠B=90°,则∠BCD的度数为____________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)操作思考:如图1,在平面直角坐标系中,等腰直角的直角顶点在原点,将其绕着点旋转,若顶点恰好落在点处.则①的长为______;②点的坐标为______(直接写结果)
(2)感悟应用:如图2,在平面直角坐标系中,将等腰直角如图放置,直角顶点,点,试求直线的函数表达式.
(3)拓展研究:如图3,在直角坐标系中,点,过点作轴,垂足为点,作轴,垂足为点是线段上的一个动点,点是直线上一动点.问是否存在以点为直角顶点的等腰直角,若存在,请直接写出此时点的坐标,若不存在,请说明理由.
15、(8分)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=6cm, ∠BAO=30°,点F为AB的中点.
(1)求OF的长度;
(2)求AC的长.
16、(8分)如图,王华在晚上由路灯走向路灯,当他走到点时,发现身后 他影子的顶部刚好接触到路灯的底部,当他向前再步行到达点时 ,发现身前他影子的顶部刚好接触到路灯的底部,已知王华的身高是,如果两个路灯之间的距离为,且两路灯的高度相同,求路灯的高度.
17、(10分)如图,在正方形ABCD中,P是CD边上一点,DF⊥AP,BE⊥AP.
求证:AE=DF.
18、(10分)如图,在矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.
20、(4分)将两个全等的直角三角形的直角边对齐拼成平行四边形,若这两个直角三角形直角边的长分别是,那么拼成的平行四边形较长的对角线长是__________.
21、(4分)使得二次根式有意义的x的取值范围是 .
22、(4分)已知矩形,给出三个关系式:①②③如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________ .
23、(4分)如图,正方形的边长为8,点是上的一点,连接并延长交射线于点,将沿直线翻折,点落在点处,的延长线交于点,当时,则的长为__.
二、解答题(本大题共3个小题,共30分)
24、(8分)2019车8月8日至18日,第十八届“世警会”首次来到亚洲在成都举办武侯区以相关事宜为契机,进一步改善区域生态环境.在天府吴园道部分地段种植白芙蓉和醉芙蓉两种花卉.经市场调查,种植费用y(元)与种植面积x(m2)之间的函数关系如图所示.
(1)请直接写出两种花卉y与x的函数关系式;
(2)白芙蓉和醉芙蓉两种花卉的种植面积共1000m2,若白芙蓉的种植面积不少于100m2且不超过醉芙蓉种植面积的3倍,那么应该怎样分配两种花卉的种植面积才能使种植总费用最少?
25、(10分)2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时?
26、(12分)如图,在平面直角坐标系内,三个顶点的坐标分别为,,.
(1)平移,使点移动到点,画出平移后的,并写出点,的坐标;
(2)画出关于原点对称的;
(3)线段的长度为______.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据二次根式的性质逐项计算即可.
【详解】
解:A、=8,故此选项错误;
B、﹣=﹣8,故此选项错正确;
C、=8,故此选项错误;
D、=8,故此选项错误;
故选:B.
题考查了二次根式的性质,熟练掌握是解答本题的关键.
2、D
【解析】
在这四位同学中,丙、丁的平均时间一样,比甲、乙的用时少,但丁的方差小,成绩比较稳定,由此可知,可选择丁,故选D.
3、B
【解析】
根据平行线的判定定理分别进行判断即可.
【详解】
解:①当∠B+∠BCD=180°,AB∥CD,故正确;
②当∠3=∠2时,AB=BC,故错误;
③当∠1=∠4时,AD=DC,故错误;
④当∠B=∠1时,AB∥CD,故正确.
所以正确的有2个
故选:B.
本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.
4、B
【解析】
根据函数图象可直接确定k、b的符号判断A、C,根据图象与x轴的交点坐标判断选项B,根据函数性质判断选项D.
【详解】
由图象得:k<0,b>0,∴A、C都错误;
∵图象与x轴交于点(1,0),∴方程的解为,故B正确;
∵k<0,∴y随着x的增大而减小,由1<3得m>n,故D错误,
故选:B.
此题考查一次函数的图象,一次函数的性质,正确理解图象得到对应的信息是解题的关键.
5、B
【解析】
试题分析:根据内角和定理180°×(n-2)即可求得.
解:180°×(n-2)=720°,解得n=1.
考点:多边形的内角和定理.
6、B
【解析】
由平行四边形的性质得出BC=AD=6cm,由直角三角形斜边上的中线性质即可得出结果.
【详解】
解:∵四边形ABCD是平行四边形,
∴BC=AD=6cm,
∵E为BC的中点,AC⊥AB,
∴AE=BC=3cm,
故选:B.
本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.
7、C
【解析】
A.对角线相互垂直的矩形是正方形,故本项正确;B. 对角线相等的菱形是正方形,故本项正确;C.对角线互相垂直、平分、且相等的四边形才是正方形,故本项错误;D. 对角线垂直且相等的平行四边形是正方形,故本项正确.故选C.
8、A
【解析】
先根据∠DAB=∠CAE得出∠DAE=∠BAC,再由相似三角形的判定定理对各选项进行逐一判定即可.
【详解】
∵∠DAB=∠CAE,∴∠DAE=∠BAC.
A.∵,∠B与∠D的大小无法判定,∴无法判定△ABC∽△ADE,故本选项正确;
B.∵,∴△ABC∽△ADE,故本选项错误;
C.∵∠B=∠D,∴△ABC∽△ADE,故本选项错误;
D.∵∠C=∠AED,∴△ABC∽△ADE,故本选项错误.
故选A.
本题考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
直接利用二次根式的定义分析得出答案.
【详解】
∵二次根式的值最小,
∴2x﹣6=0,解得:x=1,
故答案为1.
本题主要考查了二次根式的定义,正确把握定义是解题关键.
10、5
【解析】
由于是一个正整数,所以根据题意,也是一个正整数,故可得出m的值.
【详解】
解:∵是一个正整数,
∴根据题意,是一个最小的完全平方数,
∴m=5,故答案为5.
本题主要考查了二次根式的定义,正确对二次根式进行化简并找到被开方数是解答本题的关键.
11、y=﹣x+1
【解析】
分析:由y随着x的增大而减小可得出k<0,取k=-1,再根据一次函数图象上点的坐标特征可得出b=1,此题得解.
详解:设该一次函数的解析式为y=kx+b.
∵y随着x的增大而减小,
∴k<0,
取k=﹣1.
∵点(0,1)在一次函数图象上,
∴b=1.
故答案为y=﹣x+1.
点睛:本题考查了一次函数的性质以及一次函数图象上点的坐标特征,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.
12、39cm 60cm1
【解析】
根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=AD=CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.
【详解】
∵BE、CE分别平分∠ABC、∠BCD,
∴∠1=∠3=∠ABC,∠DCE=∠BCE=∠BCD,
在▱ABCD中,AB=CD,AD=BC,AD∥BC,AB∥CD,
∵AD∥BC,AB∥CD,
∴∠1=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,
∴∠1=∠1,∠DCE=∠CED,∠3+∠BCE=90°,
∴AB=AE,CD=DE,∠BEC=90°,
在Rt△BCE中,根据勾股定理得:BC=13cm,
∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;
作EF⊥BC于F,
根据直角三角形的面积公式得:EF=cm,
∴平行四边形ABCD的面积=BC·EF==60cm1,
故答案为39cm,60cm1.
本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
13、135°
【解析】
根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,进而得出答案.
【详解】
连接AC,
在Rt△ABC中,由勾股定理得:,
∵AB=BC,
∴∠BAC=∠ACB=45°,
∵CD=1,AD=3,AC=2,
∴AC2+CD2=AD2,
∴∠ACD=90°,
∴∠DCB=90°+45°=135°,
故答案为:135°.
本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD是直角三角形是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);(3)
【解析】
(1)根据勾股定理可得OA长,由对应边相等可得B点坐标;
(2)通过证明得出点B坐标,用待定系数法求直线的函数表达式;
(3)设点Q坐标为,可通过证三角形全等的性质可得a的值,由Q点坐标可间接求出P点坐标.
【详解】
解:(1)如图1,作轴于F,轴于E.
由A点坐标可知
在中,根据勾股定理可得;
为等腰直角三角形
轴于F,轴于E
又
所以B点坐标为:
(2)如图,过点作轴.
为等腰直角三角形
轴
又
∴,
∴,
∴.
设直线的表达式为
将和代入,得
,
解得,
∴直线的函数表达式.
(3)如图3,分两种情况,点Q可在x轴下方和点Q在x轴上方
设点Q坐标为,点P坐标为
当点Q在x轴下方时,连接,过点作 交其延长线于M,则M点坐标为
为等腰直角三角形
又
由题意得
,
解得 ,所以
当点Q在x轴上方时,连接,过点作 交其延长线于N,则N点坐标为
同理可得,
由题意得
,
解得 ,所以
综上的坐标为:.
本题是一次函数与三角形的综合,主要考查了一次函数解析式、全等三角形的证明及性质,灵活运用全等的性质求点的坐标是解题的关键.
15、 (1) ;(2).
【解析】
分析:(1)由四边形ABCD是菱形,对角线AC与BD相交于O,由点F为AB的中点,得到OF=AB,即可得到结论;
(2)在Rt△AOB中,由30°角所对直角边等于斜边的一半,得到OB的长,然后由勾股定理求得OA的长,继而求得AC的长.
详解:(1)∵ABCD是菱形,∴AC⊥BD,
在RtΔAOB中,OF为斜边AB边上的中线,
∴OF=AB=3cm ;
(2)在Rt△AOB中, ∠BAO=30°, ∴OB=AB=3 ,
由勾股定理得:OA==3,∴AC=OA=6.
点睛:本题考查了菱形的性质、含30°角的直角三角形以及勾股定理.熟练掌握相关性质和定理是解题的关键.
16、路灯的高度是
【解析】
根据题意结合图形可知,AP=OB,在P点时有,列出比例式进行即可即可
【详解】
解:由题意知:
即
解得
答:路灯的高度是
本题主要考查相似三角形的应用,熟练掌握相似三角形对应边成比例是解题关键
17、详见解析
【解析】
根据正方形的性质可得AB=AD,∠BAD=90°,再根据∠AEB=∠AFD=90°,∠ABE+∠BAE=90°,得到∠ABE=∠DAF,然后通过“角角边”证得△ABE ≌△ADF,则可得AE=DF.
【详解】
证明∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠DAF+∠BAE=90°,
又∵DF⊥AP,BE⊥AP,
∴∠AEB=∠AFD=90°,
∴∠ABE+∠BAE=90°,
∴∠ABE=∠DAF,
在△ABE 与△ADF中,
,
∴△ABE ≌△ADF(AAS),
∴AE=DF(全等三角形对应边相等).
18、见解析
【解析】
根据MN是BD的垂直平分线可得OB=OD,根据两直线平行,内错角相等可得∠OBN=∠ODM,然后利用“角边角”证明△BON和△DOM全等,根据全等三角形对应边相等可得BN=MD,从而求出四边形BMDN是平行四边形,再根据线段垂直平分线上的点到两端点的距离相等可得MB=MD,然后根据邻边相等的平行四边形是菱形证明即可.
【详解】
∵MN是BD的垂直平分线,
∴OB=OD,∠BON=∠DOM,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠OBN=∠ODM
在△BON和△DOM中,
,
∴△BON≌△DOM(ASA),
∴BN=MD,
∴四边形BMDN是平行四边形,
∵MN是BD的垂直平分线,
∴MB=MD,
∴平行四边形BMDN是菱形.
本题考查了菱形的判定,主要利用了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,平行四边形的判定与性质,全等三角形的判定与性质,熟记各性质并准确识图是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≤1.
【解析】
将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;
【详解】
解:点P(m,3)代入y=x+2,
∴m=1,
∴P(1,3),
结合图象可知x+2≤ax+c的解为x≤1,
故答案为:x≤1.
本题考查一次函数的交点坐标与一元一次不等式的关系;运用数形结合思想把一元一次不等式的解转化为一次函数图象的关系是解题的关键.
20、
【解析】
根据题意拼图,再运用勾股定理求解即可
【详解】
如图,
将直角边为的边长对齐拼成平行四边形,
它的对角线最长为:(cm).
故答案为:.
本题主要考查平行四边形的判定及勾股定理的应用,能够画出正确的图形,并作简单的计算.
21、x≥﹣
【解析】
试题分析:根据被开方数大于等于0,可得2x+1≥0,解得x≥﹣.
考点:二次根式有意义的条件
22、① 一组邻边相等的矩形是正方形
【解析】
根据正方形的判定定理添加一个条件使得矩形是菱形即可.
【详解】
解:∵四边形ABCD是矩形,AB=BC,
∴矩形ABCD为正方形(一组邻边相等的矩形是正方形).
故答案为:①,一组邻边相等的矩形是正方形.
本题考查了正方形的判定定理,熟练掌握正方形的判定定理即可得到结论.
23、
【解析】
根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM=x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM-AN计算即可得解.
【详解】
沿直线翻折,点落在点处,
,,
正方形对边,
,
,
,
设,,
,
,,
在中,由勾股定理得,,
即,
解得,
所以,,
所以,.
故答案为:
本题考查了翻折变换的性质,正方形的性质,勾股定理,翻折前后对应线段相等,对应角相等,此类题目,关键在于利用勾股定理列出方程.
二、解答题(本大题共3个小题,共30分)
24、(1)y=,y=100x(x≥0);(2)当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少
【解析】
(1)根据函数图象中的数据可以求得两种花卉y与x的函数关系式;
(2)根据(1)中的函数解析式和题意,利用一次函数的性质可以求得怎样分配两种花卉的种植面积才能使种植总费用最少.
【详解】
(1)当0≤x≤200时,设白芙蓉对应的函数解析式为y=ax,
200a=24000,得a=120,
即当0≤x≤200时,白芙蓉对应的函数解析式为y=120x,
当x>200时,设白芙蓉对应的函数解析式为y=bx+c,
,得,
即当x>200时,白芙蓉对应的函数解析式为y=80x+8000,
由上可得,白芙蓉对应的函数解析式为y=
设醉芙蓉对应的函数解析式为y=dx,
400d=40000,得d=100,
即醉芙蓉对应的函数解析式为y=100x(x≥0);
(2)设白芙蓉种植面积为em2,则醉芙蓉种植面积为(1000-e)m2,种植的总费用为w元,
∵白芙蓉的种植面积不少于100m2且不超过醉芙蓉种植面积的3倍,
∴100≤e≤3(1000-e),
解得,100≤e≤750,
当100≤e≤200时,
w=120e+100(1000-e)=20e+100000,
∴当e=100时,w取得最小值,此时w=102000,
当200<e≤750时,
w=80e+8000+100(1000-e)=-20e+108000,
∴当e=750时,w取得最小值,此时w=93000,1000-e=250,
由上可得,当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少,
答:当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
25、提速前的速度为200千米/小时,提速后的速度为350千米/小时,
【解析】
设列车提速前的速度为x千米每小时和列车提速后的速度为1.5千米每小时,根据关键语句“100千米缩短了10分钟”可列方程,解方程即可.
【详解】
设提速前后的速度分别为x千米每小时和1.5x千米每小时,根据题意得:
解得:x=200,
经检验:x=200是原方程的根,
∴1.5x=300,
答:提速前后的速度分别是200千米每小时和300千米每小时.
考查了分式方程的应用,解题关键是弄懂题意,找出等量关系,列出方程.
26、(1)如图见解析,,;(2)如图见解析;(3).
【解析】
(1)作出A、C的对应点A1、C1即可解决问题;
(2)根据中心对称的性质,作出A、B、C的对应点A2、B2、C2即可;
(3)利用两点之间的距离公式计算即可.
【详解】
(1)平移后的△A1B1C1如图所示,点A1(4,2),C1(3,-1).
(2)△ABC关于原点O对称的△A2B2C2如图所示.
(3)AA1=.
本题考查了平移变换、旋转变换、两点之间的距离公式等知识,解题的关键是正确作出对应点解决问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
丙
丁
(秒)
30
30
28
28
1.21
1.05
1.21
1.05
浙江省湖州市吴兴区十学校2025届数学九上开学综合测试模拟试题【含答案】: 这是一份浙江省湖州市吴兴区十学校2025届数学九上开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2024年浙江省湖州市吴兴区十校联考九上数学开学联考试题【含答案】: 这是一份2024年浙江省湖州市吴兴区十校联考九上数学开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年浙江省湖州市吴兴区十校联考九上数学开学联考试题【含答案】: 这是一份2024年浙江省湖州市吴兴区十校联考九上数学开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。